核心问题:估计状态转移概率 a ^ i j \hat{a}_{ij} a^ij
我们需要知道,从一个隐藏状态 i i i 转移到另一个隐藏状态 j j j 的概率。这个概率并不能通过直接观察到的数据计算,因为隐藏状态是我们看不到的("隐"马尔可夫模型)。
所以,我们通过模型的参数 λ \lambda λ 和观测序列 O O O 来估计这个转移概率。
公式:
a ^ i j = 从状态 i 转移到状态 j 的期望次数 从状态 i 转移的总期望次数 \hat{a}_{ij} = \frac{\text{从状态 $i$ 转移到状态 $j$ 的期望次数}}{\text{从状态 $i$ 转移的总期望次数}} a^ij=从状态 i 转移的总期望次数从状态 i 转移到状态 j 的期望次数
如何计算分子(从状态 i i i 转移到状态 j j j 的期望次数)
这里引入了转移概率 ξ ( i , j ) \xi(i, j) ξ(i,j),它的公式是:
ξ ( i , j ) = P ( q t = i , q t + 1 = j ∣ O , λ ) \xi(i, j) = P(q_t = i, q_{t+1} = j | O, \lambda) ξ(i,j)=P(qt=i,qt+1=j∣O,λ)
- ξ ( i , j ) \xi(i, j) ξ(i,j) 表示在时刻 t t t,隐藏状态从 i i i 转移到 j j j 的概率。
- 这个概率是通过模型计算出来的,结合了:
- 前向概率 α t ( i ) \alpha_t(i) αt(i):表示时刻 t t t 状态为 i i i,并生成观测序列 O 1 , O 2 , … , O t O_1, O_2, \dots, O_t O1,O2,…,Ot 的概率。
- 后向概率 β t + 1 ( j ) \beta_{t+1}(j) βt+1(j):表示从时刻 t + 1 t+1 t+