蓝桥杯之数论专题

等差数列最短项数(最大公因子)

在这里插入图片描述
在这里插入图片描述

一开始简单以为是 n-1个差值里面的最小值,实际上不一定满足别的n-1个差值就恰好是该最小值的整数倍,应该找的是n-1个差值的最大公因数

#include<bits/stdc++.h>
using namespace std;
#define int long long 
const int N=1e5+5;
int n;
int a[N];
int gcd(int x,int y){//最大公因数 6 4  4 2  2 0
    if(y){
        return gcd(y,x%y);
    }
    else return x;
}
signed main(){
    cin>>n;
    for(int i=0;i<n;i++)cin>>a[i];
    sort(a,a+n);
     // 等差要尽可能大,找到实际上最小的相差,不对,是要找差值的最大公因数
    // int diff=0x3f3f3f3f;//等差数列最短则
    //  for(int i=0;i<n-1;i++){
    //      diff=min(diff,a[i+1]-a[i]);
    //  }
    int diff=0;
    for(int i=0;i<n-1;i++){
         diff=gcd(diff,a[i+1]-a[i]);
    }
     if(diff==0)cout<<n;//不要忘记特判这种特别的diff为0的等差数列
     else
     cout<<(a[n-1]-a[0])/diff+1;
    return 0;
}

X的因子链(分解质因子)

在这里插入图片描述

输入样例:

2
3
4
10
100

输出样例:

1 1
1 1
2 1
2 2
4 6

思路:

在这里插入图片描述
首先,X一定可以拆分成多个质数的乘积
构造最长序列,序列可以以一个质因数开头,每次乘以X的其中一个质因子,最后乘到X (因为质数是X因子中已经不可再分的了,把X拆分成质数的乘积后,可以保证序列的长度最长,序列的最长长度就是质因子的个数)
最大长度就是 总的质因子个数(幂次大于1的重复的质因子也计入)(将质因子逐项累乘的积)
素因子分解,得到结果后,可以看出最长的链,就是素因子依次乘过去,比如 100 − > 2 , 2 , 5 , 5 100 − > 2 , 2 , 5 , 5 100>2,2,5,5 ,那么最长链之一就是 2 , 4 , 20 , 100 2 , 4 , 20 , 100 2,4,20,100

求序列的数量:
如果质因子乘的次序不同,序列也会不同,因为质因子可能会有重复,
因此可以用排列组合的知识(多重集合的排列问题),
序列的个数=用质因子个数的阶乘除以各个质因子重复出现次数的阶乘
比如 2 ∗ 2 ∗ 2 ∗ 3 ∗ 3 ∗ 4 = 288 2 ∗ 2 ∗ 2 ∗ 3 ∗ 3 ∗ 4 = 288 222334=288 , 质因子数量总共是6, 2有三个,3有两个,4有1个,因此序列的最长长度为6,序列的数量= 6!/(3!*2!)

做法一:直接分解质因子

#include<bits/stdc++.h>
using namespace std;
#define int long long 
const int N=1e5+5;
int n,x;
int cnt=0;
// int prime[N];
int nums[N];
int sum=0;
void fun(){
    sum=0;
    cnt=0;//质因子
    memset(nums,0,sizeof(nums));
    for(int i=2;i*i<=x;i++){
        if(x%i==0){//哇趣,求余为0啊!!!
            cnt++;
            // prime[cnt]=i;
            while(x%i==0){
                x/=i;
                nums[cnt]++;
            }
            sum+=nums[cnt];
        }
    }
    if(x!=1){
        cnt++;
        // prime[cnt]=x;
        nums[cnt]++;
     sum+=nums[cnt];
    }
}
signed main(){//2^20等于1048576 1e6
    while(cin>>x){
        fun();//输出序列的最大长度就是总的质因子个数(将质因子逐项累乘的积)
        cout<<sum<<" ";
        // cnt!/ (nums[1]!*nums[2]!……)

        int res=1;
        // for(int i=1;i<=cnt;i++){
        //     res*=i;
        //     for(int j=1;j<=nums[i];j++){
        //         res/=j;
        //     }
        // }//对于 cnt!/ (nums[1]!*nums[2]!……) 这种分子分母不确定的连乘数除法,
        // 边乘边除不太合适,对于C(m,n)且(m>n)这种才合适,因为同时从1开始起步连乘
        for(int i=1;i<=sum;i++){
            res*=i;
        }
        for(int i=1;i<=cnt;i++){
            for(int j=1;j<=nums[i];j++){
                res/=j;
            }
        }
        cout<<res;
        cout<<endl;
    }
    return 0;
}

做法二:欧拉筛(原理是每一个非质数都被其最小质因数筛去,则可以记录合数的最小质因数,直接找到x的最小质因数,分解掉再继续找剩下部分的质因数)

#include<bits/stdc++.h>
using namespace std;
#define int long long 
const int N=(1<<20)+5;
int n,x;
int prime[N];
int vis[N];
int minPrime[N];
int nums[N];//非常注意多组输入,nums又是累加计数,一定要初始化
int sum=0;
void oula(){
    int cnt=0;
    // memset(vis,0,sizeof(vis));
    memset(prime,0,sizeof(prime));
    memset(minPrime,0,sizeof(minPrime));
    vis[0]=1;
    vis[1]=1;
    for(int i=2;i<=N;i++){
        if(!prime[i]){//prime数组代替vis
            prime[cnt++]=i;
            minPrime[i]=i;//质数i的最小质因数就是i本身
        }
        for(int j=0;j<cnt&&i*prime[j]<=N;j++){
            prime[i*prime[j]]=1;prime数组代替vis
            minPrime[i*prime[j]]=prime[j];
            if(i%prime[j]==0)break;
        }
    }
    // 向后筛出速度一定大于存储速度,当prime[cnt]是质数,一定早就经过了vis的检验
}
signed main(){//2^20等于1048576 1e6
    oula();
    while(cin>>x){
        
        
        int cnt=0;//x分解出来的质因子
        sum=0;
       while(x>1){
           int mp=minPrime[x];
           cnt++;
            nums[cnt]=0;//初始化!!!
           while(x%mp==0){
               x/=mp;
               sum++;
               nums[cnt]++;
           }
       }
       int res=1;
        for(int i=1;i<=sum;i++){
            res*=i;
        }
        for(int i=1;i<=cnt;i++){
            for(int j=1;j<=nums[i];j++){
                res/=j;
            }
        }
        cout<<sum<<" "<<res;
        cout<<endl;
    }
    return 0;
}

边乘边除的适宜情况

   // for(int i=1;i<=cnt;i++){
        //     res*=i;
        //     for(int j=1;j<=nums[i];j++){
        //         res/=j;
        //     }
        // }//对于 cnt!/ (nums[1]!*nums[2]!……) 这种分子分母不确定的连乘数除法,
        // 边乘边除不太合适,对于C(m,n)且(m>n)这种才合适,因为同时从1开始起步连乘
int C(int a,int b){//C(5,2)=5*4/2/1
	int res=1;
	for(int i=a,j=1;j<=b;j++,i--){
		res=res*i/j;//边乘边除
		if(res>n)return res;//防止爆long long,反正大于n也不可能取这个值 
	}
	return res; 
}

聪明的燕姿

在这里插入图片描述
输入样例:

42

输出样例:

3
20 26 41

五指山(扩欧)

在这里插入图片描述
输入样例:

2
3 2 0 2
3 2 0 1

输出样例:

1
2

扩展欧几里得算法

欧几里得算法:可以求出两个数的最大公约数d 即(a, b) = d.

裴蜀定理 ------- 扩展欧几里得算法
可以求出最大公约数d,且可以求出 ax + by = d 的系数
首先我们已经知道了,如何通过扩展欧几里德算法,求出方程的其中一组解了

那么就可以继续往下看

给出两个方程

ax1+by1=gcd(a,b)

ax2+by2=gcd(a,b)

所以可以推出

ax1+by1=ax2+by2

a(x1-x2)=b(y2-y1)

然后我们知道gcd(a,b)为a,b的最大公因数,所以我们将 A=a/gcd(a,b),B=b/gcd(a,b),接着往下推出

A(x1-x2)=B(y2-y1)

现在A和B两个已经是互素了,所以又可以接着推出

(这个地方要好好理解,重点!)

A*(nB)=B(n*A)

(x1-x2)=n*B

(y2-y1)=n*A

这里我们从x入手

(x1-x2)=n*B

x1=x2+n*B

由此,我们推出了x解的通解公式 x=x0+n*B

同理,我们推出了y解的通解公式 y=y0-m*A

那么我们如果要求 x 的最小整数解,也就是 x0, 就是 x0=x%B

如果我们要求的是 ax+by=c,还得先转化 x=x*c/gcd(a,b).

然后套入我们的公式

B=b/gcd(a,b)

x0=x%(b/gcd(a,b))
证明来自这位博主

假设有整数k,p,q
n d x y
最先想到的是 (y-x+n)/d 能否得到一个整数,很显然整除要通过求余来体现
(y-x+n)%d==0,马上反应过来,可以不止多翻一圈来达到目的地,于是(y-x+k*n)%d==0
(2+3)%5,那么2%5==-3%5

//此时要是有同余方程的概念或者是 取模的规则(a+b)%mod=a%mod+b%mod
//于是有 (y-x)%d==(-k*n)%d,至于y-x+k*n 三项为什么是y-x在一边,因为这是个确定的数
//于是 k*n = x-y (mod d),再转换等式形式,k*n+p*d=x-y
//根据拓展欧几里得定理,首先x*a+y*p=gcd(a,p),如果x-y % gcd(a,p)!=0,那么impossible
//是可以求出满足的最小 k,p的,我们要求的就是最小的p
正负号问题
不对,首先是y-x+k*n=p*d, p*d-k*n=y-x,d的系数p一定要为正数但k可以随意
要保证d的系数p为正数,(y-x)%d==(-k*n)%d不可以这样继续,这样继续默认的是d的系数取任意整数值
应该是p*d+k*n=y-x
#include<bits/stdc++.h>
using namespace std;
#define int long long 
const int N=1e5+5;
int n,d,x,y,T;
int exgcd(int a,int p,int &x,int &y){//x*a+y*p=gcd(a,p)
	if(!p){
		x=1,y=0;
		return a;//返回值是 gcd(a,p)
	}
	int res=exgcd(p,a%p,y,x);//参数要紧跟着呀!!
	y-=a/p*x;
	return res;
}
signed main(){
    cin>>T;
    while(T--){
        cin>>n>>d>>x>>y;
        // p*d+k*n=x-y
        int p,k;//求p
        int res=exgcd(d,n,p,k);
        if((y-x)%res!=0)cout<<"Impossible";
        else{
            int t=(y-x)/res;
            p*=t;
            n/=res;
            cout<<(p%n+n)%n;
        }
        if(T)cout<<endl;
    }
    return 0;
}
// 5
// 86 9 52 39
// 58 8 40 25
// 98 75 14 46
// 16 12 7 5
// 13 7 1 3

C循环(扩欧)

在这里插入图片描述
输入样例:

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

输出样例:

0
2
32766
FOREVER
 A+p*C=B (mod k)
p*C+q*k=B-A,求p

用到拓展欧几里得算法的题本质上都是一个loop,不需要自己去对式子进行等价变换处理,对正负号处理可能会出错,比如上一题五指山,其实按题意可以直接抽象 (一圈是n,跳跃间隔是d,起点x,终点y,其实就是

 x+p*d=y (mod n)
p*d+q*n=y-x,求p
#include <bits/stdc++.h>
using namespace std;
#define int long long int
int exgcd(int a,int p,int &x,int &y){//ax+py=gcd(a,p)
    
    if(!p){
        x=1,y=0;
        return a;
    }
    int res=exgcd(p,a%p,y,x);
    y-=a/p*x;
    return res;
}
// A+p*C=B (mod k)
// p*C+q*k=B-A,求p
signed main(){
    int A,B,C,k,p,q;
    while(cin>>A>>B>>C>>k){
        if(!A&&!B&&!C&&!k){
            return 0;
        }
        int K=1ll<<k;
        int res=exgcd(C,K,p,q);
        if((B-A)%res)cout<<"FOREVER";
        else{
            p*=((B-A)/res);
            K/=res;
            // printf("%lld",(p%K+K)%K);
            cout<<(p%K+K)%K;
        }
        cout<<endl;
    }
	
    return 0;
}

最大比例

在这里插入图片描述
输入样例1:

3
1250 200 32

输出样例1:

25/4

输入样例2:

4
3125 32 32 200

输出样例2:

5/2

输入样例3:

3
549755813888 524288 2

输出样例3:

4/1

正则问题

在这里插入图片描述
输入样例:

((xx|xxx)x|(x|xx))xx 

输出样例:

6

糖果(状压dp)

在这里插入图片描述
输入样例:

6 5 3
1 1 2
1 2 3
1 1 3
2 3 5
5 4 2
5 1 2

输出样例:

2

以下两句一样吗?分情况,
当 int 就是int ,一样
当int是long long int 的代称,下面的就不正确了,上面的永远是正确的用于初始化为无穷大的(除非超时)

  memset(dp,0x3f,sizeof(dp));
 fill(dp,dp+N,inf);
#include <bits/stdc++.h>
using namespace std;
// #define int long long int
const int inf=0x3f3f3f3f;
const int N=105;
int a[N][N];
int n,m,k;//n包,每包k个糖,m种口味,最少买几包
int dp[1<<20];//dp[i][j]前i包,状态为j 时 最少需要取几包
signed main(){
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=k;j++){
            cin>>a[i][j];//值代表口味
        }
    }
    memset(dp,0x3f,sizeof(dp));
    // fill(dp,dp+N,inf);
    dp[0]=0;
    // 假设m=3,111,所有的状态是 0~ 1<<m -1 
    for(int i=1;i<=n;i++){
        int tmp=0;
        for(int j=1;j<=k;j++){//这一包
            tmp|=(1<<(a[i][j]-1));
        }
        for(int st=0;st<(1<<m);st++){//在这之前所有状态的 取得数量
            
            if(dp[st]==inf)continue;//前i-1包得不到这个状态
            int cur=st|tmp;
            // dp[cur]=min(dp[cur],dp[st]+1);
            if(dp[cur]==inf||dp[cur]>dp[st]+1){
                dp[cur]=dp[st]+1;
            }
        }
    }
    // cout<<(dp[(1<<m)-1]==inf)?"-1":dp[(1<<m)-1];
    if(dp[(1<<m)-1]==inf)cout<<"-1";
    else cout<<dp[(1<<m)-1];
	
    return 0;
}

牵扯到选不选,而且选择达到的目标给的范围很小的时候,多半可以压缩状态。
而且这道题又问的是最少的包数,多半是压状dp。

算法:顺序枚举每一包糖果,然后枚举每一个状态,然后用糖果的状态去获得新状态,并且更新状态里的最少包数。

注意优化成一维不然暴空间

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值