蓝桥杯基础数论

本文介绍了蓝桥杯比赛中的基础数论概念,包括分解质因数模板,埃氏素筛法,欧几里得算法求最大公约数和最小公倍数,以及同余定理的应用。通过实例解析了如何确定完全平方数,并展示了快速幂取模的计算方法,解决超大数据范围的取模问题。
摘要由CSDN通过智能技术生成

分解质因数模板

每个合数n都可以写成几个质数相乘的形式,其中每个质数都是这个合数n的因数,把一个合数n用质因数相乘的形式表示出来,叫做分解质因数
n中最多只包含一个大于根号n的质因子
例如:30=2x3x5,分解质因数只针对合数,对于质数只能表示为1和它本身,如:17=1*17

代码:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
long long int n;
int main()
{
   
	cin>>n;
	for(int i=2;i<=sqrt(n);i++)
	{
   
		if(n%i==0)
		{
   
			while(n%i==0)
			{
   
				n=n/i;
			}
		}
		cout<<i<<" "<<endl;
	}
	if(n>1)
	{
   
		cout<<n<<" "<<endl; 
	}
	return 0;
}

第十二届蓝桥杯 第二场 完全平方数
在这里插入图片描述
思路:
找到一个数x,使得nxX=bxb
一个数A如果能组成完全平方数B,那么该完全平方数B一定由A的质因子的偶次方构成
所以我们分解n的质因数,如果某个质因数的次数是奇次方,那么乘上该质因数的次方就为偶次方了
假如n=24
24xX=bxb
24的质因子为2和3,24=2的三次方*3的一次方在这里插入图片描述

#include<iostream>
#include<cmath>
using namespace std;
int main() {
   
	long long 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值