分解质因数模板
每个合数n都可以写成几个质数相乘的形式,其中每个质数都是这个合数n的因数,把一个合数n用质因数相乘的形式表示出来,叫做分解质因数
n中最多只包含一个大于根号n的质因子
例如:30=2x3x5,分解质因数只针对合数,对于质数只能表示为1和它本身,如:17=1*17
代码:
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
long long int n;
int main()
{
cin>>n;
for(int i=2;i<=sqrt(n);i++)
{
if(n%i==0)
{
while(n%i==0)
{
n=n/i;
}
}
cout<<i<<" "<<endl;
}
if(n>1)
{
cout<<n<<" "<<endl;
}
return 0;
}
第十二届蓝桥杯 第二场 完全平方数
思路:
找到一个数x,使得nxX=bxb
一个数A如果能组成完全平方数B,那么该完全平方数B一定由A的质因子的偶次方构成
所以我们分解n的质因数,如果某个质因数的次数是奇次方,那么乘上该质因数的次方就为偶次方了
假如n=24
24xX=bxb
24的质因子为2和3,24=2的三次方*3的一次方
#include<iostream>
#include<cmath>
using namespace std;
int main() {
long long