论文标题:Improving Augmentation Consistency for Graph Contrastive Learning
论文链接:Improving Augmentation Consistency for Graph Contrastive Learning - ScienceDirect
目录
四、方法详解 (ConGCL: A new consistent GCL method)
2 怎么得到上下文子图表示(Context Subgraph Representations)
一、标题解读
通俗化来说,就是提高经过数据增强之后的两个视图中对应节点的一致性,分为两个方面:①缩小两个对应节点之间差异;②对齐(视图一中的节点和负例节点的距离)与(视图二中对应的节点和同一负例节点的距离)。最后实现图节点分类。
二、背景问题
现有图数据增强的方法中,增强视图中的节点很难从锚视图中继承图的语义和结构特性,这可能会损害增强视图中的节点一致性。
三、提出的方法
本文了ConGCL,首先考虑节点语义和结构信息,以更好地挖掘节点的潜在一致性关系。然后设计一个一致性改进损失函数,该损失采用了一个自适应的α -散度来维护随机增广方案下正节点对的增强一致性协议。
四、方法详解 (ConGCL: A new consistent GCL method)
1 Context entailment
1.1 语义关系
图数据增强后得到的两个视图经过图嵌入(两层GCN)后,两个对应的节点的向量表示分别为u,v。他们的semantic relationship表示为他们的余弦相似度:
1.2 结构关系
定义为节点u的上下文子图表示,即由节点u的前h个相邻节点构成。(