Pattern Recognition2024图对比学习论文解读Improving Augmentation Consistency for Graph Contrastive Learning

本文介绍了一种新的图对比学习方法ConGCL,旨在解决数据增强导致的节点一致性问题。通过结合语义和结构关系,以及自适应α散度策略,ConGCL优化了增强视图中节点的一致性,从而提高图节点分类性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文标题:Improving Augmentation Consistency for Graph Contrastive Learning

论文链接:Improving Augmentation Consistency for Graph Contrastive Learning - ScienceDirect

代码:https://github.com/brysonwx/ConGCL

目录

一、标题解读

二、背景问题

三、提出的方法

四、方法详解 (ConGCL: A new consistent GCL method)

1 Context entailment

1.1 语义关系

1.2 结构关系

2 怎么得到上下文子图表示(Context Subgraph Representations)

3 怎样增强一致性

3.1 α散度

3.2 自适应α散度

4 最终的损失函数

5 算法框架

五、总结


一、标题解读

通俗化来说,就是提高经过数据增强之后的两个视图中对应节点的一致性,分为两个方面:①缩小两个对应节点之间差异;②对齐(视图一中的节点和负例节点的距离)与(视图二中对应的节点和同一负例节点的距离)。最后实现图节点分类

二、背景问题

现有图数据增强的方法中,增强视图中的节点很难从锚视图中继承图的语义和结构特性,这可能会损害增强视图中的节点一致性。

三、提出的方法

本文了ConGCL,首先考虑节点语义和结构信息,以更好地挖掘节点的潜在一致性关系。然后设计一个一致性改进损失函数,该损失采用了一个自适应的α -散度来维护随机增广方案下正节点对的增强一致性协议。

四、方法详解 (ConGCL: A new consistent GCL method)

1 Context entailment

1.1 语义关系

图数据增强后得到的两个视图经过图嵌入(两层GCN)后,两个对应的节点的向量表示分别为u,v。他们的semantic relationship表示为他们的余弦相似度:

1.2 结构关系

定义Z_{u}为节点u的上下文子图表示,即由节点u的前h个相邻节点构成。(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值