**我们每一个人都想在自己所处的行业处于精英位置,尤其每个技术人员心里多多少少都有一个成为技术大牛的梦,毕竟“梦想总是要有的,万一实现了呢”!正是对技术梦的追求,促使我们不断地努力和提升自己。**![在这里插入图片描述](https://img-blog.csdnimg.cn/20210701191841485.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzUxMDgyNTE3,size_16,color_FFFFFF,t_70#pic_center)
下面看看Python和深度神经网络是如何识别图像的?
只需要10几行Python代码,你就能构建自己的机器视觉模型,快速准确识别海量图片。快来试试吧!
视觉
进化的作用,让人类对图像的处理变得非常高效。
这里,我给你展示一张照片。
如果我这样问你:
你能否分辨出图片中哪个是猫,哪个是狗?
你可能立即会觉得自己遭受到了莫大的侮辱。并且大声质问我:你觉得我智商有问题吗?!
息怒。
换一个问法:
你能否把自己分辨猫狗图片的方法,描述成严格的规则,教给计算机,以便让它替我们人类分辨成千上万张图片呢?
对大多数人来说,此时感受到的,就不是羞辱,而是压力了。
你早已听说过自动驾驶汽车的神奇之处吧?没有机器对图像的辨识,能做到吗?
你的好友可能(不止一次)给你演是如何用新买的iPhone X做面部识别解锁了吧?没有机器对图像的辨识,能做到吗?以下看看它的贡献吧
医学领域里,计算机对于科学影像(如X光片)的分析能力,已经超过有多年从业经验的医生了。没有机器对图像的辨识,能做到吗?
如何构建自己的图片分类系统呢,构建模型,它就是传说中的卷积神经网络,它是深度机器学习模型的一种。最为简单的卷积神经网络大概长这个样子:
最左边的,是输入层。也就是咱们输入的图片。本例中,是哆啦a梦和瓦力。
在计算机里,图片是按照不同颜色(RGB,即Red, Green, Blue)分层存储的。就像下面这个例子。
卷积层听起来似乎很神秘和复杂。但是原理非常简单。它是由若干个过滤器组成的。每个过滤器就是一个小矩阵。下面这张动图,很形象地为你解释了这一过程。
我们把鼠标挪到第一个卷积层。停在任意一个像素上。电脑就告诉我们这个点是从上一层图形中哪几个像素,经过特征检测得来的。
总结:
如果你之前对深度神经网络有一些了解,一定会更加觉得不可思议。这么多层,这么少的训练数据量,怎么能获得如此好的测试结果呢?而如果要获得好的训练效果,大量图片的训练过程,岂不是应该花很长时间吗?
没错,如果你自己从头搭建,并且在ImageNet数据集上做训练,那么即便你有很好的硬件设备(GPU),也需要很长时间.