baseline

一。首先对数据有一个初步了解:

scipy.io.loadmat
aal_data----blod信号数据
lab_data
aal_extracted
lab_extracted 为什么将数组转化为列表?
first_person_aal
first_person_aal_correct—for i in range(first_person_aal_correct.shape[1]):
这是一个for循环,它将遍历first_person_aal_correct数组的列数。shape[1]表示获取数组的第二维的大小,也就是列数。
mean_aal_correct --没显示
std_aal_correct --没显示

现在,定义一个函数plot_bold_signals用来绘制脑区数据的时间序列图:

mat_data
aal_data
signal_data 获取指定被试的脑区的数据
subject_indices人数数组
area_indices脑区数组
绘制前三个被试者前五个脑区的时间序列

检查每个人的数据结构,确保我们正确理解其维度
sample_person_data 包含每个人的所有数据
sample_person_shapes 包含所有人的数据形状

二。初步分析

pca主成分分析
stacked_aal_data
具体来说,np.stack 函数可以将一个由多个数组组成的列表或元组作为输入,
然后返回一个新的 NumPy 数组,这些输入数组被沿着指定的新轴堆叠起来。

将sample_person_data中的多个形状为(175, 116)的数组堆叠起来,
然后将堆叠后的数组重塑为一个形状为(184, 20160)的二维数组,其中每个原始数组被展开成一行。
这种操作通常用于将多个数据样本组合成一个大的特征矩阵,以便进行后续的数据处理或机器学习模型的训练
pca.fit_transform 是在 Python 中使用主成分分析(Principal Component Analysis,PCA)时调用的一个方法,
它结合了两个步骤:拟合数据并转换数据。

pca.fit:这个方法是用来拟合 PCA 变换的,它计算数据的协方差矩阵,并根据协方差矩阵计算主成分。
在这个过程中,PCA 会找到数据中最重要的方向(即主成分),这些方向能够解释数据中的最大方差。
pca.transform:这个方法是将原始数据投影到主成分上,从而降低数据的维度。
在拟合 PCA 之后,我们可以使用 transform 方法来转换数据,这样数据就会按照主成分方向重新表示。
将这两个步骤合并,pca.fit_transform 方法首先拟合数据(找到主成分),然后立即将数据转换(投影)到这些主成分上。
这是一个很常见的操作,因为在进行数据降维之前,我们需要先计算主成分。
pca_result —使用pca降维之后的数据

在数据科学和机器学习中,方差是衡量数据分散程度的一个重要统计量。数据中的最大方差通常具有以下用途:

信息量:方差大的特征包含了更多的信息。在数据降维或特征选择中,
我们通常希望选择那些能够最大化数据方差的特征,因为这些特征能够更好地解释数据的变异性。
主成分分析(PCA):在PCA中,我们寻找能够最大化数据方差的新特征(即主成分)。
这些主成分是原始特征的线性组合,它们按照方差大小排序,第一个主成分解释了数据中的最大方差
,第二个主成分解释了次大的方差,依此类推。通过保留前几个主成分,
我们可以实现数据的降维,同时尽可能保留最多的信息。
解释性:方差大的特征可能对应于数据中重要的结构或模式。
例如,在图像处理中,方差大的像素可能对应于图像的主要结构,如边缘或纹理。
预处理:在机器学习模型训练之前,我们可能需要对数据进行标准化或归一化。
方差可以帮助我们了解特征的分布范围,从而更好地进行预处理。

explained_variance_ratio_ 是 PCA 对象的一个属性,
它包含了每个主成分能够解释的原始数据方差的比例。这个属性是在调用 fit 方法后自动计算的。
np.sum(explained_variance) 计算了 explained_variance 数组中所有元素的和,
这个和代表了所有主成分共同解释的原始数据方差的比例。
这两行代码用于评估 PCA 降维后保留了多少原始数据的信息。在实际应用中,我们通常希望选择足够多的主成分,
以便它们能够解释数据中大部分的方差(例如,超过 70%、80% 或更高),这样可以确保在降维过程中尽量减少信息损失。

.fit_predict
stacked_aal_data:这是一个 NumPy 数组,包含了你想要进行聚类分析的数据。
这些数据应该是经过预处理和准备的,通常需要被缩放到相同的尺度,并且每一行代表一个数据点,每一列代表一个特征。
kmeans.fit_predict():这是 KMeans 类的一个方法,它结合了两个步骤:拟合(fit)和预测(predict)。
fit 步骤:这个方法会计算 K-means 聚类的中心点,
并将每个数据点分配到最近的中心点所代表的群组中。这是通过迭代优化过程完成的,直到中心点不再显著移动为止。
predict 步骤:一旦聚类中心被确定,predict 方法会为每个数据点分配一个群组标签(即它是属于哪个群组的)。
clusters:这是 fit_predict 方法的返回值,它是一个数组,包含了 stacked_aal_data 中每个数据点被分配的群组标签。
例如,如果 clusters[0] 是 1,那么 stacked_aal_data 中的第一个数据点被分配到了第二个群组(因为群组标签是从 0 开始的)

pca_result:这是一个 NumPy 数组,包含了经过 PCA 处理后的数据。
PCA 通常用于降维,假设 pca_result 是一个二维数组,那么第一列包含了数据在第一个主成分方向上的投影,
第二列包含了数据在第二个主成分方向上的投影。
pca_result[:, 0] 和 pca_result[:, 1]:这两个表达式分别选取了 pca_result 数组中的第一列和第二列,
这些列将用于散点图中的 x 轴和 y 轴。
c=clusters:这个参数指定了每个点的颜色。clusters 是一个数组,包含了每个数据点所属的聚类标签。
scatter 函数会根据这些标签自动为每个点分配颜色。
cmap=‘viridis’:这个参数指定了颜色映射(colormap),即如何将聚类标签映射到颜色。
‘viridis’ 是 matplotlib 中的一个预定义颜色映射,它提供了从蓝色到黄色的渐变色。
alpha=0.5:这个参数设置了点的透明度。
alpha 的值介于 0(完全透明)和 1(完全不透明)之间,0.5 表示点有一半的不透明度。
总的来说,这行代码的作用是创建一个散点图,展示了 pca_result 数据在第一个和第二个主成分方向上的投影,
并根据 clusters 中的聚类标签给点着色。这有助于可视化不同聚类在降维后的数据空间中的分布情况。
通过观察散点图,我们可以初步了解数据的聚类结构,并可能指导后续的分析或模型选择。

unique_clusters = np.unique(clusters):
clusters 是一个数组,其中包含了每个数据点被分配的群组标签。
np.unique 是 NumPy 库中的一个函数,用于找出数组中的唯一元素,并返回一个排序后的数组。
因此,unique_clusters 将包含 clusters 中所有唯一的群组标签。
cluster_counts = {cluster: np.sum(clusters == cluster) for cluster in unique_clusters}:
这是一个字典推导式,它创建了一个新的字典 cluster_counts。
对于 unique_clusters 中的每个 cluster,它会计算 clusters 数组中等于该 cluster 的元素的数量。
np.sum(clusters == cluster) 是一个布尔表达式,
clusters == cluster 会创建一个布尔数组,其中值为 True 的位置对应于 clusters 中等于 cluster 的元素。
np.sum 会计算这个布尔数组中 True 的数量,即等于 cluster 的元素的数量。
结果,cluster_counts 字典将包含每个独特群组标签及其对应的计数。

correlation_matrices = [np.corrcoef(person.T) for person in sample_person_data]:
这行代码使用了列表推导式来创建一个列表 correlation_matrices。
sample_person_data 是一个列表,其中包含了多个数据矩阵。每个数据矩阵 person 都是二维的,
np.corrcoef(person.T) 使用 NumPy 的 corrcoef 函数来计算 person 矩阵的转置 person.T 的相关系数矩阵
np.corrcoef 计算的是列与列之间的相关系数,因此我们需要对矩阵进行转置,
使得原来的行变成列,以便计算行与行(即原始的列与列)之间的相关系数。
列表推导式会为 sample_person_data 中的每个矩阵计算一个相关系数矩阵,并将这些矩阵作为列表的元素。
average_correlation_matrix = np.mean(correlation_matrices, axis=0):
这行代码使用 NumPy 的 mean 函数来计算 correlation_matrices 列表中的所有相关系数矩阵的平均值。
axis=0 参数指定了平均值应该沿着哪个轴计算。在这里,它表示计算每个位置的列的平均值,
即对所有相关系数矩阵的对应列求平均。结果 average_correlation_matrix 将是一个二维数组,
其中每个元素是 correlation_matrices 中对应位置元素的平均值。
这个平均值矩阵可以提供一种方式来理解多个数据矩阵之间的平均相关性结构。
例如,在神经科学研究中,sample_person_data 可能包含了多个被试的脑区活动数据,
计算平均相关系数矩阵可以帮助研究者理解不同脑区之间的平均功能连接性

high_correlation = np.where(average_correlation_matrix > 0.8):
np.where 是 NumPy 中的一个函数,它返回数组中满足给定条件的元素的索引。
average_correlation_matrix > 0.8 是一个布尔表达式,它创建了一个布尔数组,
其中值为 True 的位置对应于 average_correlation_matrix 中大于 0.8 的元素。
np.where 返回的是一个元组,其中包含了满足条件的元素的行索引和列索引。
high_correlation_pairs = [(i, j) for i, j in zip(high_correlation[0], high_correlation[1]) if i != j]:
这是一个列表推导式,它创建了一个新的列表 high_correlation_pairs。
zip(high_correlation[0], high_correlation[1]) 将 high_correlation 元组中的行索引和列索引组合成一对一对的索引。
列表推导式遍历这些索引对 (i, j),并通过条件 if i != j 过滤掉对角线上的元素(即索引相同的情况),
因为我们通常对非对角线上的高相关性感兴趣。
结果 high_correlation_pairs 是一个列表,其中包含了所有大于 0.8 的相关系数元素的索引对。
len(high_correlation_pairs), high_correlation_pairs[:5]:
len(high_correlation_pairs) 计算列表 high_correlation_pairs 的长度,即有多少对元素的相关系数大于 0.8。
high_correlation_pairs[:5] 获取列表中的前五个元素,用于显示高相关性的部分结果。

正式阶段::

接下来进行数据预处理:
函数:数据去噪
def denoise_data(data):
savgol_filter 是 SciPy 库中的一个函数,用于应用 Savitzky-Golay 滤波器,
这是一种在时间序列数据平滑和微分中的常用技术。Savitzky-Golay 滤波器是一种局部多项式回归技术,
它可以用来平滑数据、去除噪声,同时保持数据的峰值和宽度不变。

下面是 savgol_filter 函数的参数解释:

data:这是你要滤波的数据,可以是 NumPy 数组或者类似的结构。
5:这是滤波窗口的大小,它决定了滤波器考虑的数据点的数量。这个值必须是奇数。
2:这是多项式的阶数。这个值决定了用于拟合数据的多项式的复杂度。
axis=0:这个参数指定了滤波应该沿着哪个轴进行。在多维数据中,
axis=0 表示沿着行方向(垂直方向)进行滤波,axis=1 表示沿着列方向(水平方向)进行滤波。
Savitzky-Golay 滤波器的优势包括:

局部性:它是一种局部滤波器,只考虑窗口内的数据点,因此能够更好地保留局部特征。
灵活性:通过调整窗口大小和多项式阶数,可以自定义滤波器的行为,以适应不同的数据特征。
边缘保持:与一些其他平滑技术不同,Savitzky-Golay 滤波器在平滑数据的同时,能够较好地保持数据的边缘和峰值。
噪声减少:它可以有效地去除数据中的随机噪声,同时保留信号的重要特征。
采用 Savitzky-Golay 滤波器的原因通常包括:

数据平滑:当数据中存在噪声时,使用 Savitzky-Golay 滤波器可以平滑数据,使其更易于分析。
特征提取:在信号处理中,Savitzky-Golay 滤波器可以用来提取信号的局部特征,如峰值、拐点等。
微分和积分:Savitzky-Golay 滤波器可以用于数据的微分和积分,而不会引入过多的噪声。
预处理:在机器学习和数据分析中,Savitzky-Golay 滤波器可以作为数据预处理步骤,帮助提高模型的性能。
总之,Savitzky-Golay 滤波器是一种强大的工具,用于处理和分析时间序列数据,尤其是在需要平滑数据同时保留其重要特征的情况下

在科学研究和数据分析中,平滑曲线的作用是多方面的,主要包括以下几点:

减少噪声:数据收集过程中可能会受到各种噪声的干扰,如测量误差、环境因素等。平滑曲线可以有效地减少这些噪声的影响,使数据更清晰、更可靠。
突出趋势:平滑曲线可以帮助我们更清晰地看到数据的趋势和模式。通过去除噪声,我们可以更容易地识别出数据中的重要特征,如上升或下降趋势、周期性波动等。
数据可视化:在数据可视化中,平滑曲线可以使图表更加美观,同时也更容易被读者理解。平滑曲线可以隐藏一些不重要的细节,突出数据的主要特征。
模型训练:在机器学习和数据科学中,平滑曲线可以作为模型的输入数据。平滑后的数据更接近真实数据的分布,有助于提高模型的准确性和鲁棒性。
信号处理:在信号处理领域,平滑曲线可以用于滤除噪声、提取信号等。平滑曲线有助于我们更好地理解信号的本质,从而进行更准确的分析和处理。
提高预测准确性:在时间序列分析中,平滑曲线可以用于预测未来的趋势。平滑后的数据更接近真实数据的趋势,有助于提高预测的准确性

函数:去除线性趋势
def detrend_data(data):
这个函数 detrend_data 的目的是去除数据中的线性趋势。
线性趋势是指数据随时间或其他连续变量呈线性增长或减少的模式。
去除线性趋势有助于我们更好地分析数据的非线性部分,或者在某些情况下,我们希望数据没有明显的趋势,
以便于后续的分析或处理。
现在,让我们详细解释这个过程:

  1. time = np.arange(data.shape[0])
    • 这行代码创建了一个与数据行数相同的一维数组 time,其中包含从 0 到 data.shape[0] - 1 的整数。
      这个数组可以看作是时间轴或某个连续变量的值。
  2. for i in range(data.shape[1]):
    • 这行代码开始一个循环,循环的次数与数据列数相同。对于数据中的每一列,我们都将执行以下步骤。
  3. p = np.polyfit(time, data[:, i], 1)
    • 这行代码使用 NumPy 的 polyfit 函数来计算多项式拟合。
      polyfit 函数接受三个参数:时间数组 time、数据数组 data[:, i] 和多项式的阶数 1
    • 在这个例子中,我们只考虑一阶多项式,即线性趋势。
      因此,polyfit 函数会计算数据列 data[:, i] 与时间数组 time 之间的线性关系。
    • 返回的结果 p 是一个包含多项式系数的列表,第一个元素是截距,第二个元素是斜率。
  4. data[:, i] -= np.polyval(p, time)
    • 这行代码使用 NumPy 的 polyval 函数来计算多项式的值。
      polyval 函数接受一个多项式系数列表 p 和一个时间数组 time
    • np.polyval(p, time) 计算的是多项式 p[0]*time + p[1] 在时间数组 time 上的值。
    • 然后,我们将这个值从原始数据列 data[:, i] 中减去,以去除线性趋势。
  5. return data
    • 循环完成后,函数返回去除线性趋势后的数据数组 data
      为什么要去除线性趋势以及为什么要使用 NumPy 的多项式拟合去除一阶趋势:
  • 去除线性趋势:线性趋势可能会掩盖数据中的其他模式或信息。
    例如,如果数据中有季节性波动,线性趋势可能会使季节性模式变得难以识别。
    去除线性趋势有助于我们更准确地分析数据。
  • 使用 NumPy 的多项式拟合:NumPy 的 polyfitpolyval 函数是处理多项式拟合和计算的高效工具。
    它们可以快速地计算出多项式的系数和值,这对于大数据集的处理尤为重要。
    此外,NumPy 提供了高度优化的底层代码,可以确保算法的效率和准确性。

函数:标准化数据
def normalize_data(data):
这段代码定义了一个函数 normalize_data,其目的是对输入的数据进行标准化处理。
标准化处理是一种数据预处理技术,它将数据转换到均值为0、标准差为1的分布。
这种转换有助于提高模型训练的稳定性和效率,因为所有特征的尺度都得到了统一。
让我们分步骤解释这段代码:

  1. mean = np.mean(data, axis=0)
    • 这行代码计算了数据矩阵 data 在每一列(即特征)上的平均值。
      mean 是一个一维数组,包含了 data 每一列的平均值。
  2. std = np.std(data, axis=0)
    • 这行代码计算了数据矩阵 data 在每一列上的标准差。
      std 是一个一维数组,包含了 data 每一列的标准差。
  3. return (data - mean) / std
    • 这行代码定义了标准化处理的公式,并返回了标准化的数据。
    • (data - mean) 表示每个数据点减去其对应特征的平均值。
    • / std 表示每个数据点除以其对应特征的标准差。
    • 最终,返回的数据矩阵 data 每一列的均值都变为0,标准差都变为1。
      为何要这样写:
  • 标准化处理:通过标准化处理,我们可以将所有特征缩放到相同的尺度,这样不会因为特征的量级差异而影响模型的训练和预测。
  • 提高模型性能:标准化处理有助于提高模型的泛化能力,因为它减少了由于特征尺度差异带来的偏差。
  • 特征缩放:在某些机器学习算法中,特征缩放是必须的,因为它可以加快优化过程,避免某些特征权重过大或过小。
  • 提高数据的可解释性:标准化处理使得数据更容易理解和解释,因为所有特征都在相同的范围内。
  • 数学性质:标准化处理后的数据具有数学上的稳定性,这使得在计算距离、相似度等时更加方便。
    综上所述,normalize_data 函数通过计算每个特征的平均值和标准差,
    然后对数据进行相应的调整,从而实现了数据的标准化处理。

preprocessed_data预处理之后的数据
preprocessed_sample 检查第一个个体的处理后数据

使用层次聚类方法分析平均相关矩阵
这行代码使用了 scipy.cluster.hierarchy 模块中的 linkage 函数,
用于计算数据集的层次聚类树(hierarchical clustering tree),并返回一个链接矩阵(linkage matrix)。
首先,让我们解释代码的各个部分:

  1. linkage_matrix = linkage(average_correlation_matrix, method='ward')
    • linkagescipy.cluster.hierarchy 模块中的一个函数,用于计算层次聚类树。
    • average_correlation_matrix 是一个二维数组,代表了数据集的相似度矩阵。
      在层次聚类中,我们通常使用相似度矩阵来表示数据点之间的相似程度。
    • method='ward' 指定了使用的层次聚类方法。在这个例子中,
      我们使用的是 Ward 方法,这是一种经常用于层次聚类的距离度量方法。
      接下来,让我们解释层次聚类的基本原理和 Ward 方法的实现过程:
      层次聚类的基本原理
      层次聚类是一种将数据点逐渐组合成越来越大的群组的过程。这个过程可以分为两个阶段:
  2. 凝聚阶段:在这个阶段,数据点首先被组合成单个的群组,然后逐步合并成更大的群组,直到所有数据点都被合并成一个群组。
  3. 切割阶段:一旦所有数据点都被合并,我们就可以根据数据点的合并路径来构建一个树状结构,
    这个结构称为层次聚类树。树状结构中的每个节点代表一个群组,而边代表了群组之间的相似度。
    Ward 方法的实现过程
    Ward 方法是一种基于方差的聚类方法。它计算每个群组内数据点之间的平均距离,并试图最小化群组之间的方差。
    方差是衡量数据分散程度的一个指标,方差越小,数据越集中。
  4. 计算群组内数据点之间的平均距离:Ward 方法首先计算每个群组内数据点之间的平均距离。
    这可以通过计算群组内每个数据点与群组中心点的距离,然后求这些距离的平均值来实现。
  5. 最小化群组之间的方差:Ward 方法的目标是最小化所有群组之间的方差。在凝聚阶段,每次合并两个群组时,
    它会计算合并后群组内数据点之间的平均距离,并将其与合并前群组之间的方差进行比较。
    如果合并后的方差小于合并前的方差,那么这个合并就是有效的,否则合并就是无效的。
  6. 构建层次聚类树:一旦所有数据点都被合并,Ward 方法会根据数据点的合并路径来构建一个树状结构,
    这个结构称为层次聚类树。树状结构中的每个节点代表一个群组,而边代表了群组之间的相似度。
    为何要用这个方法
    Ward 方法在处理数据时能够很好地保持群组的紧凑性,这对于许多应用场景来说是一个重要的优点。
    例如,在基因表达数据分析中,我们通常希望将表达模式相似的基因归为一组,Ward 方法可以帮助我们实现这一点。
    此外,Ward 方法还具有计算效率高、易于理解等优点。

准备特征和标签
这行代码使用了 scikit-learn 库中的 StandardScaler 类,对训练集 X_train 和测试集 X_test 进行了标准化缩放
。标准化缩放是一种数据预处理技术,它的目的是将数据集中的每个特征缩放到相同的尺度,
以避免某些特征因为量级差异而对模型训练产生影响。
标准化缩放通常分为两种:

  1. 标准化:将每个特征值减去其平均值,然后除以标准差。标准化后的数据均值为0,标准差为1。
  2. 归一化:将每个特征值减去其最小值,然后除以最大值与最小值的差。归一化后的数据范围为[0, 1]。
    StandardScaler 类实现了标准化,下面是它的实现过程:
  3. scaler = StandardScaler()
    • 这行代码创建了一个 StandardScaler 对象,它是一个无参数的类,不需要进行初始化。
  4. X_train_scaled = scaler.fit_transform(X_train)
    • fit_transformStandardScaler 类的一个方法,它结合了拟合和转换两个步骤。
    • fit 步骤:fit_transform 方法首先计算训练集 X_train 中每个特征的均值和标准差。
    • transform 步骤:然后,使用这些均值和标准差来转换 X_train 中的数据。
      转换后的数据会减去对应的均值,然后除以标准差。
  5. X_test_scaled = scaler.transform(X_test)
    • 这行代码使用相同的 StandardScaler 对象来转换测试集 X_test
    • 由于 X_test 是在 X_train 之后转换的,X_test 中的每个特征都已经知道了其对应的均值和标准差
      ,因此可以直接进行缩放。
      为何要使用该方法:
  • 避免量级差异:在机器学习中,某些算法(如k-最近邻、支持向量机等)对特征的量级非常敏感。
    如果特征之间量级差异很大,那么量级大的特征可能会在模型训练中占据主导地位,从而影响模型的性能。
    特征缩放可以避免这种情况。
  • 提高模型性能:通过特征缩放,模型可以更准确地学习数据的分布,从而提高模型的性能。
  • 数据可视化:特征缩放可以使得数据在可视化时更加均匀地分布在坐标轴上,
    有助于我们更好地理解数据的分布和特征之间的关系。
    综上所述,StandardScaler 类通过计算每个特征的均值和标准差,
    然后使用这些统计量来转换数据,从而实现了特征缩放。这种方法有助于提高模型的性能,
    尤其是在使用距离度量或需要特征在相同尺度上的算法时。

这行代码使用了 scikit-learn 库中的 GridSearchCV 类来设置一个支持向量机(SVM)分类器的参数网格,
并进行了网格搜索以找到最佳参数。GridSearchCV 是一个工具,它通过在预定义的参数集合上搜索,
找到最佳的模型参数。
下面是代码的各个部分和实现过程的详细解释:

  1. param_grid = {'C': [0.1, 1, 10], 'gamma': ['scale', 'auto'], 'kernel': ['linear', 'rbf']}
    • 这行代码定义了一个字典 param_grid,其中包含了 SVM 分类器的参数和它们的可能值。
    • 'C' 是 SVM 分类器的一个参数,它控制了错误项的惩罚力度。
      较大的 C 值会导致模型更加保守,而较小的 C 值会导致模型更加灵活。
    • 'gamma' 是 SVM 分类器中的另一个参数,它控制了径向基函数(RBF)核的宽度。
      较大的 gamma 值会导致模型更加保守,而较小的 gamma 值会导致模型更加灵活。
    • 'kernel' 是 SVM 分类器的核函数,它决定了如何将原始数据映射到高维特征空间。
      常见的核函数包括线性核、多项式核、径向基函数核和 sigmoid 核。
  2. svm = SVC()
    • 这行代码创建了一个 SVC 对象,它是一个支持向量机分类器的实例。
      SVC 类是 scikit-learn 库中用于实现 SVM 分类器的类。
  3. grid_search = GridSearchCV(svm, param_grid, cv=3, scoring='accuracy', verbose=1)
    • 这行代码创建了一个 GridSearchCV 对象,它是一个交叉验证网格搜索分类器验证器。
    • svm 是之前创建的 SVC 对象,它将被用作网格搜索的对象。
    • param_grid 是之前定义的参数网格,它包含了 SVM 分类器的参数和它们的可能值。
    • cv=3 指定了交叉验证的折数,即模型将在数据集的 3 份(3 折交叉验证)上进行评估。
    • scoring='accuracy' 指定了交叉验证的评分方法,这里使用的是准确率。
    • verbose=1 指定了网格搜索的输出级别,这里为 1,表示输出详细的搜索过程信息。
      为何要使用该方法:
  • 自动参数调优:通过使用 GridSearchCV,可以自动地在预定义的参数集合上搜索,
    找到最佳的模型参数。这可以节省手动尝试不同参数组合的时间和精力。
  • 提高模型性能:通过找到最佳的参数组合,可以提高模型的性能,尤其是在数据集有限的情况下。
  • 交叉验证GridSearchCV 结合了交叉验证,可以在数据集的不同部分上评估模型,
    以避免过拟合,并确保找到的参数组合在未知数据上也能表现良好。
    综上所述,GridSearchCV 是一个强大的工具,用于自动寻找最佳模型参数。
    通过结合交叉验证和网格搜索,它可以有效地提高模型的性能,并减少手动调参的工作量。

这行代码使用了 GridSearchCV 对象进行网格搜索和交叉验证,
并从中选择出最佳的 SVM 分类器(best_estimator_)。
GridSearchCV 是一个模型选择和调优的类,它通过在指定的参数集合上进行网格搜索,
并使用交叉验证来评估每个参数组合的性能。
下面是这行代码的详细解释:

  1. grid_search.fit(X_train, y_train)
    • 这行代码调用了 GridSearchCV 对象的 fit 方法,它将训练数据集 X_train 和目标标签 y_train 传递给 GridSearchCV
    • fit 方法会执行以下步骤:
      • 应用交叉验证,将数据集分割成多个子集,并在这些子集上评估模型。
      • 对于每个参数组合,都会训练一个模型,并在交叉验证的子集上评估其性能。
      • 记录每个参数组合的性能指标(在这个例子中是准确率)。
  2. grid_search.best_estimator_
    • best_estimator_GridSearchCV 对象的一个属性,它返回在交叉验证中表现最好的模型。
    • 这个属性返回的是一个模型对象,它包含了最佳的参数组合。
      为何要使用该方法:
  • 自动参数调优:通过使用 GridSearchCV,可以自动地在预定义的参数集合上搜索,
    找到最佳的模型参数。这可以节省手动尝试不同参数组合的时间和精力。
  • 提高模型性能:通过找到最佳的参数组合,可以提高模型的性能,尤其是在数据集有限的情况下。
  • 交叉验证GridSearchCV 结合了交叉验证,可以在数据集的不同部分上评估模型,
    以避免过拟合,并确保找到的参数组合在未知数据上也能表现良好。
    综上所述,best_estimator_ 属性返回了在交叉验证中表现最好的 SVM 分类器,
    它包含了最佳的参数组合。通过使用 GridSearchCVbest_estimator_
    可以自动地找到最佳的模型参数,并提高模型的性能。

这些评价指标是机器学习中常用的性能评估工具,用于衡量分类模型的性能。下面我将逐一解释这些指标,并提供通俗的例子说明它们的作用。

  1. 准确率(Accuracy)
    • 定义:准确率是指模型正确分类的样本占总样本的比例。
    • 公式:[ \text{Accuracy} = \frac{\text{正确分类的样本数}}{\text{总样本数}} ]
    • 作用:准确率可以提供一个简单的指标来评估模型的整体性能,但它可能会高估模型的性能,特别是当类别不平衡时。
    • 举例:假设一个模型用于识别图片中的猫和狗,模型正确识别了1000张图片中的950张,那么准确率为95%。
  2. 混淆矩阵(Confusion Matrix)
    • 定义:混淆矩阵是一个二维表格,用于表示模型预测结果与真实标签之间的比较。
    • 构成:通常包含四个部分:真正例(TP)、假正例(FP)、真反例(FN)和假反例(TN)。
    • 作用:混淆矩阵提供了模型性能的详细视图,可以用于计算其他评估指标,如精确率、召回率等。
    • 举例:假设一个模型用于识别图片中的猫和狗,混淆矩阵可能如下:
      • TP:模型正确识别为猫的图片数量
      • FP:模型错误识别为猫的图片数量
      • FN:模型错误识别为狗的图片数量
      • TN:模型正确识别为狗的图片数量
  3. 分类报告(Classification Report)
    • 定义:分类报告是一个文本输出,它包含了多个评估指标,如精确率、召回率、F1分数等。
    • 作用:分类报告提供了模型在每个类别上的详细性能评估,可以帮助我们了解模型的整体性能以及每个类别的性能。
    • 举例:分类报告可能会包含以下指标:
      • 精确率(Precision):模型预测为正的样本中,实际为正的比例。
      • 召回率(Recall):实际为正的样本中,被模型预测为正的比例。
      • F1分数:精确率和召回率的调和平均数。
      • 支持(Support):每个类别中的样本数量。
        根据这些指标进行分析的方法:
  • 准确率:当类别不平衡时,需要考虑其他指标来全面评估模型性能。
  • 混淆矩阵:通过分析混淆矩阵,可以了解模型在不同类别上的性能,并识别模型最常犯的错误。
  • 分类报告:通过分类报告,可以了解模型在各个类别上的精确率、召回率和F1分数,从而选择最适合特定任务的模型。
    这些指标可以用于不同的情况,例如:
  • 准确率:适用于需要快速评估模型性能的场景。
  • 混淆矩阵:适用于需要了解模型在不同类别上性能的场景。
  • 分类报告:适用于需要深入了解模型在每个类别上性能的场景。

这行代码使用了 scikit-learn 库中的 SMOTE 类,对训练集 X_train_scaled 和标签 y_train 进行了过采样,以解决类别不平衡问题。过采样是一种数据预处理技术,它的目的是增加少数类别的样本数量,以提高模型对少数类别的识别能力。
下面是代码的各个部分和实现过程的详细解释:

  1. smote = SMOTE(random_state=42)
    • 这行代码创建了一个 SMOTE 对象,它是一个过采样器的实例。SMOTE 类是 scikit-learn 库中用于解决类别不平衡问题的类。
    • random_state=42 是一个可选参数,它指定了随机数生成器的种子。设置随机种子可以确保结果的可重复性。
  2. X_train_smote, y_train_smote = smote.fit_resample(X_train_scaled, y_train)
    • fit_resampleSMOTE 类的一个方法,它结合了拟合和过采样两个步骤。
    • fit 步骤:fit_resample 方法首先计算数据集 X_train_scaled 和标签 y_train 中每个类别的分布。
    • resample 步骤:然后,使用 SMOTE 算法来生成少数类别的合成样本。SMOTE 算法的工作原理是在少数类别的样本附近随机选择一个样本,然后生成一个新的合成样本,使其与原始样本的距离小于或等于给定的阈值。
      为何要使用该方法:
  • 解决类别不平衡问题:在许多实际应用中,数据集中的类别可能不平衡,即某些类别的样本数量远多于其他类别。这种不平衡可能会导致模型偏向多数类别,从而降低模型对少数类别的识别能力。
  • 提高模型性能:通过过采样,可以增加少数类别的样本数量,从而提高模型对少数类别的识别能力,并提高模型在未知数据上的性能。
    综上所述,SMOTE 类通过计算每个类别的分布,然后使用 SMOTE 算法生成少数类别的合成样本,从而实现了过采样。这种方法有助于解决类别不平衡问题,并提高模型的性能。

这行代码使用了 scikit-learn 库中的 SVC 类,创建了一个支持向量机(SVM)分类器,并使用过采样后的数据集 X_train_smote 和标签 y_train_smote 进行训练。
下面是代码的各个部分和实现过程的详细解释:

  1. svm_smote = SVC(C=10, kernel='rbf')
    • 这行代码创建了一个 SVC 对象,它是一个支持向量机分类器的实例。SVC 类是 scikit-learn 库中用于实现 SVM 分类器的类。
    • C=10 是 SVM 分类器的一个参数,它控制了错误项的惩罚力度。较大的 C 值会导致模型更加保守,而较小的 C 值会导致模型更加灵活。
    • kernel='rbf' 是 SVM 分类器的核函数,它决定了如何将原始数据映射到高维特征空间。在这个例子中,我们使用的是径向基函数(RBF)核,它是一个强大的非线性核函数,能够处理非线性数据。
  2. svm_smote.fit(X_train_smote, y_train_smote)
    • 这行代码调用了 SVC 对象的 fit 方法,它将过采样后的训练数据集 X_train_smote 和标签 y_train_smote 传递给 SVC
    • fit 方法会执行以下步骤:
      • 将数据集 X_train_smote 和标签 y_train_smote 转换为适合 SVM 分类器的格式。
      • 使用 kernel='rbf' 指定的径向基函数核,将数据映射到高维特征空间。
      • 在高维特征空间中,使用支持向量机算法找到最佳的分离超平面,并计算模型参数。
      • 存储模型参数,以便在后续的预测中使用。
        为何要使用该方法:
  • 解决类别不平衡问题:在许多实际应用中,数据集中的类别可能不平衡,即某些类别的样本数量远多于其他类别。这种不平衡可能会导致模型偏向多数类别,从而降低模型对少数类别的识别能力。通过使用过采样技术,我们可以增加少数类别的样本数量,从而提高模型对少数类别的识别能力。
  • 使用径向基函数核:径向基函数核是一种强大的非线性核函数,能够处理非线性数据。在处理复杂的数据集时,使用径向基函数核可以提高模型的性能。
    综上所述,这行代码通过创建一个使用径向基函数核和适中 C 值的 SVM 分类器,并使用过采样后的数据集进行训练,以解决类别不平衡问题并提高模型性能。

这行代码使用了 scikit-learn 库中的 RandomForestClassifier 类,创建了一个随机森林分类器,并使用过采样后的数据集 X_train_smote 和标签 y_train_smote 进行训练。
下面是代码的各个部分和实现过程的详细解释:

  1. rf = RandomForestClassifier(n_estimators=100, random_state=42)
    • 这行代码创建了一个 RandomForestClassifier 对象,它是一个随机森林分类器的实例。RandomForestClassifier 类是 scikit-learn 库中用于实现随机森林分类器的类。
    • n_estimators=100 是随机森林分类器的一个参数,它指定了森林中树木的数量。更多的树木通常意味着更强的模型,但也可能增加过拟合的风险。
    • random_state=42 是一个可选参数,它指定了随机数生成器的种子。设置随机种子可以确保结果的可重复性。
  2. rf.fit(X_train_smote, y_train_smote)
    • 这行代码调用了 RandomForestClassifier 对象的 fit 方法,它将过采样后的训练数据集 X_train_smote 和标签 y_train_smote 传递给 RandomForestClassifier
    • fit 方法会执行以下步骤:
      • 随机选择数据集 X_train_smote 中的 n_estimators 个样本作为每棵树的训练集。
      • 对于每棵树,随机选择 X_train_smote 中的 n_features 个特征作为当前树的特征集。
      • 在当前树的特征集上使用 CART(分类和回归树)算法创建一棵树。
      • 重复以上步骤,直到创建 n_estimators 棵树。
      • 对于每个样本,使用森林中所有树进行投票,以确定其最终的分类。
        为何要使用该方法:
  • 集成学习:随机森林是一种集成学习方法,通过组合多个决策树来提高模型的性能。这种方法通常比单个决策树更准确,因为每个决策树都可能在不同的特征上表现更好。
  • 处理非线性数据:随机森林可以处理非线性数据,因为它使用多个决策树,每个决策树都在不同的特征集上进行训练。
  • 避免过拟合:随机森林通过在训练过程中随机选择特征和样本,可以避免过拟合。
    综上所述,这行代码通过创建一个包含100棵树的随机森林分类器,并使用过采样后的数据集进行训练,以提高模型的性能并处理非线性数据。

这行代码使用了 scikit-learn 库中的 XGBClassifier 类,创建了一个XGBoost分类器,并使用过采样后的数据集 X_train_smote 和标签 y_train_smote 进行训练。
下面是代码的各个部分和实现过程的详细解释:

  1. xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
    • 这行代码创建了一个 XGBClassifier 对象,它是一个XGBoost分类器的实例。XGBClassifier 类是 scikit-learn 库中用于实现XGBoost分类器的类。
    • use_label_encoder=False 是XGBoost分类器的一个参数,它指定了是否使用标签编码器。如果设置为 False,XGBoost将直接使用原始标签进行训练,而不是先将它们转换为数值型标签。
    • eval_metric='logloss' 是XGBoost分类器的一个参数,它指定了评估模型性能的指标。在这个例子中,我们使用的是逻辑损失(logloss),这是一种常见的分类评估指标,用于评估模型的预测性能。
  2. xgb.fit(X_train_smote, y_train_smote)
    • 这行代码调用了 XGBClassifier 对象的 fit 方法,它将过采样后的训练数据集 X_train_smote 和标签 y_train_smote 传递给 XGBClassifier
    • fit 方法会执行以下步骤:
      • 创建一个XGBoost模型实例。
      • 使用过采样后的数据集 X_train_smote 和标签 y_train_smote 训练模型。
      • 在训练过程中,XGBoost会自动优化模型参数,以最小化指定的评估指标(在这个例子中是逻辑损失)。
        为何要使用该方法:
  • XGBoost算法:XGBoost是一种强大的机器学习算法,它基于梯度提升机(gradient boosting machine)原理。XGBoost通过迭代地训练决策树,并在每个步骤中优化损失函数,从而提高模型的性能。
  • 避免标签编码:如果标签是分类变量,直接使用原始标签可以避免不必要的数据转换,从而保持数据的原始特征。
  • 逻辑损失评估:逻辑损失是一种常见的评估指标,用于评估模型的预测性能。使用逻辑损失作为评估指标可以帮助我们更好地了解模型的性能,并指导我们进行模型优化。
    综上所述,这行代码通过创建一个XGBoost分类器,并使用过采样后的数据集进行训练,以提高模型的性能。通过设置 use_label_encoder=Falseeval_metric='logloss',我们保持了数据的原始特征,并使用了逻辑损失作为评估指标,以指导模型优化。

接下里我们进行计算每个脑区的平均值、标准差等作为特征

根据您提供的上下文,我们可以推断 aal_data 是一个多维数组,其中包含了 184 个人的脑区数据。每个人的脑区数据都是一个 175x116 的矩阵,这意味着每个脑区有 175 个时间点,每个时间点有 116 个特征。
下面是对您提供的代码的详细解释:

  1. features = []
    • 创建一个空列表 features,用于存储每个脑区的特征。
  2. for person in range(aal_data.shape[1]):
    • 开始一个循环,循环的次数与 aal_data 数组的列数相同,即 116(因为有 184 个人,每个人有 116 个脑区)。
  3. person_data = aal_data[0, person]
    • 在每次循环中,从 aal_data 数组中提取当前脑区的数据。由于 aal_data 是一个多维数组,这里使用了 [0, person] 来索引它,表示取第 0 行(可能是代表某个被试的数据)和第 person 列(代表第 person 个脑区的数据)。在您的上下文中,aal_data 可能是这样的形状:(184, 175, 116),所以这里实际上是在取第 0 个被试的第 person 个脑区的数据。
  4. mean_features = np.mean(person_data, axis=0)
    • 计算当前脑区数据的平均值。mean 函数的 axis=0 参数表示按列(垂直方向)计算平均值,这将给出每个时间点的平均值。
  5. std_features = np.std(person_data, axis=0)
    • 计算当前脑区数据的标准差。std 函数的 axis=0 参数表示按列(垂直方向)计算标准差,这将给出每个时间点的标准差。
  6. max_features = np.max(person_data, axis=0)
    • 计算当前脑区数据的最大值。max 函数的 axis=0 参数表示按列(垂直方向)计算最大值,这将给出每个时间点的最大值。
  7. min_features = np.min(person_data, axis=0)
    • 计算当前脑区数据的最小值。min 函数的 axis=0 参数表示按列(垂直方向)计算最小值,这将给出每个时间点的小值。
  8. features.append(np.concatenate([mean_features, std_features, max_features, min_features]))
    • 将当前脑区的平均值、标准差、最大值和最小值拼接成一个新数组,并将其添加到 features 列表中。这个新数组将有 175 个时间点的特征值,总共 4 个特征(平均值、标准差、最大值和最小值)。
  9. features = np.array(features)
    • 最后,将 features 列表转换为一个 NumPy 数组,以便于后续处理。
      综上所述,这段代码的作用是从 aal_data 数组中提取每个脑区的数据,计算每个脑区的平均值、标准差、最大值和最小值,并将这些特征存储在一个数组中。这样做的目的是为了提取每个脑区的关键统计信息,以便于后续的分析或建模。

V

自相关性(Autocorrelation)是时间序列分析中的一个重要概念,它用于度量序列中连续观测值之间的线性关系。在信号处理中,自相关性可以用来识别信号中的重复模式或周期性特征。对于多维信号,每个通道(假设信号是二维的,每个通道是一列)的自相关性可以揭示该通道内信号的内部结构和动态特性。
自相关性的具体用途包括:

  1. 检测周期性:如果信号具有周期性,自相关性将显示出周期性的峰值,峰值的位置对应于周期的时间长度。
  2. 特征提取:在机器学习和模式识别中,自相关性可以作为特征之一,帮助模型识别时间序列数据中的模式。
  3. 信号去噪:通过分析自相关性,可以识别并去除信号中的随机噪声,提高信号的质量。
  4. 系统识别:在控制系统中,自相关性可以用来分析系统的稳定性和性能。
  5. 预测分析:在预测模型中,自相关性可以帮助预测未来的信号值,特别是在时间序列分析和天气预报等领域。
  6. 信号同步:在多通道信号处理中,自相关性可以用来同步不同通道的信号,以便进行进一步的分析。
  7. 频率分析:自相关性可以与傅里叶变换结合使用,用于分析信号的频率成分。
  8. 非线性动力系统:在研究非线性动力系统时,自相关性可以帮助分析系统的混沌行为。
    在代码中,np.roll函数用于将信号自身错位一个样本,这样每个样本都会与其后一个样本进行比较,计算它们之间的相关系数。这个相关系数的值介于-1和1之间,接近1表示强正相关,接近-1表示强负相关,而接近0表示没有线性相关。通过这种方式,自相关性揭示了信号在不同时间点的相互依赖关系。
  • 18
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值