Python数据分析训练营——Python数据分析之Panads-1

python数据分析之Panads-1

1.1 Panads基本介绍

Python Data Analysis Library 或 Pandas是基于Numpy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

import pandas as pd
import numpy as np

Pandas 基本数据结构

pandas有两种常用的基本结构:

  • Series
    • 一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很接近。Series能保存不同种数据类型,字符串、boolean值、数字等都能保存在Series中。
  • DataFrame
    • 二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。以下的内容主要以DataFrame为主。

1.2 Pandas库的series类型

一维Series可以用一维列表初始化:

s = pd.Series([1.0,'3',5,np.nan,6,8])#index = ['a','b','c','d','x','y'])设置索引,np.nan设置空值
print(s)
0      1
1      3
2      5
3    NaN
4      6
5      8
dtype: object

默认情况下,Series的下标都是数字(可以使用额外参数指定),类型是统一的。

索引——数据的行标签

s.index #从0到6(不含),1为步长
RangeIndex(start=0, stop=6, step=1)

s.values
array([ 1.,  3.,  5., nan,  6.,  8.])
s[3]
nan

切片操作

s[2:5] #左闭右开
2    5.0
3    NaN
4    6.0
dtype: float64
s[::2]
0    1.0
2    5.0
4    6.0
dtype: float64

索引赋值

s.index.name = '索引'
s
索引
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64
s.index = list('ABCDEF')
s
A    1.0
B    3.0
C    5.0
D    NaN
E    6.0
F    8.0
dtype: float64
s['A':'C':2] #依据自己定义的数据类型进行切片,不是左闭右开了
A    1.0
C    5.0
dtype: float64

1.3 Pandas库的DataFrame类型

DataFrame则是个二维结构,这里首先构造一组时间序列,作为我们第一维的下标:

date = pd.date_range("20180101", periods = 8)#【时间序列】开始日期、时间数量
print(date)
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
              dtype='datetime64[ns]', freq='D')

然后创建一个DataFrame结构:

df = pd.DataFrame(np.random.randn(8,4), index = date, columns = list("ABCD"))#【8*4的正态分布随机数】
df
ABCD
2018-01-011.577947-0.161282-0.160229-2.216352
2018-01-021.078186-2.2632480.389983-2.010975
2018-01-03-0.8959710.0011270.5315581.228181
2018-01-040.6689170.273921-0.6089881.457584
2018-01-050.301724-0.431909-0.715432-1.559604
2018-01-06-1.1113740.9286451.0799880.471519
2018-01-07-2.2026870.248372-0.655589-0.696633
2018-01-080.6571400.614334-0.7158220.263656

默认情况下,如果不指定index参数和columns,那么它们的值将从用0开始的数字替代。

df = pd.DataFrame(np.random.randn(6,4))
df
0123
00.602180-1.732669-1.9222532.498674
1-1.0118820.366737-0.123699-0.644295
20.7413520.1511770.287280-0.132270
3-0.305469-0.485153-1.201513-0.264719
4-1.256314-0.8686090.514372-0.100096
50.050320-0.7244121.0225360.675323

除了向DataFrame中传入二维数组,我们也可以使用字典传入数据:

df2 = pd.DataFrame({'A':1.,
                    'B':pd.Timestamp("20221208"),#时间戳
                    'C':pd.Series(1,index = list(range(4)),dtype = float),#一维数组
                    'D':np.array([3]*4, dtype = int),
                    'E':pd.Categorical(["test","train","test","train"]),#分类类型
                    'F':"abc"}) 
df2
ABCDEF
01.02022-12-081.03testabc
11.02022-12-081.03trainabc
21.02022-12-081.03testabc
31.02022-12-081.03trainabc
df2.dtypes #查看各个列的数据类型
A           float64
B    datetime64[ns]
C           float64
D             int32
E          category
F            object
dtype: object

字典的每个key代表一列,其value可以是各种能够转化为Series的对象。

Series要求所有的类型都一致不同,DataFrame只要求每一列数据的格式相同。

查看数据

头尾数据

headtail方法可以分别查看最前面几行和最后面几行的数据(默认为5):

df.head()
0123
00.602180-1.732669-1.9222532.498674
1-1.0118820.366737-0.123699-0.644295
20.7413520.1511770.287280-0.132270
3-0.305469-0.485153-1.201513-0.264719
4-1.256314-0.8686090.514372-0.100096

最后3行:

df.tail(3)
0123
3-0.305469-0.485153-1.201513-0.264719
4-1.256314-0.8686090.514372-0.100096
50.050320-0.7244121.0225360.675323

下标,列标,数据

下标使用index属性查看:

df.index
RangeIndex(start=0, stop=6, step=1)

列标使用columns属性查看:

df.columns
RangeIndex(start=0, stop=4, step=1)

数据值使用values查看:

df.values
array([[ 0.6021798 , -1.73266939, -1.92225262,  2.49867449],
       [-1.0118822 ,  0.36673655, -0.12369945, -0.64429504],
       [ 0.7413523 ,  0.15117739,  0.28727968, -0.13227026],
       [-0.30546859, -0.48515277, -1.2015134 , -0.26471897],
       [-1.25631361, -0.86860922,  0.51437188, -0.10009562],
       [ 0.05032004, -0.72441185,  1.02253559,  0.67532251]])

1.4 pandas读取数据及数据操作

我们将以豆瓣的电影数据作为我们深入了解Pandas的一个示例。

path='T:/WTcrazy_Python/Python/豆瓣电影数据.xlsx'#不能出现中文
df = pd.read_excel(path,index_col = 0,encoding='gbk') 
#csv:read_csv;绝对路径或相对路径默认在当前文件夹下。r告诉编译器不需要转义
#具体其它参数可以去查帮助文档 ?pd.read_excel
df.head()
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.5意大利
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港
df.tail()
名字投票人数类型产地上映时间时长年代评分首映地点
38733神学院 S46.0Adult法国1905-06-05 00:00:005819838.6美国
387341935年57.0喜剧/歌舞美国1935-03-15 00:00:009819357.6美国
38735血溅画屏95.0剧情/悬疑/犯罪/武侠/古装中国大陆1905-06-08 00:00:009119867.1美国
38736魔窟中的幻想51.0惊悚/恐怖/儿童中国大陆1905-06-08 00:00:007819868.0美国
38737列宁格勒围困之星火战役 Блокада: Фильм 2: Ленинградский ме...32.0剧情/战争苏联1905-05-30 00:00:009719776.6美国

行操作

df.loc[0]
名字                   肖申克的救赎
投票人数                 692795
类型                    剧情/犯罪
产地                       美国
上映时间    1994-09-10 00:00:00
时长                      142
年代                     1994
评分                      9.6
首映地点                 多伦多电影节
Name: 0, dtype: object
df.loc[0:5] #左闭右开
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.5意大利
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港
5泰坦尼克号157074.0剧情/爱情/灾难美国2012-04-10 00:00:0019420129.4中国大陆

也可以使用loc

df.loc[0:5] #左闭右闭
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.5意大利
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港
5泰坦尼克号157074.0剧情/爱情/灾难美国2012-04-10 00:00:0019420129.4中国大陆
添加一行
dit = {"名字":"复仇者联盟3",
       "投票人数":123456,
       "类型":"剧情/科幻",
       "产地":"美国",
       "上映时间":"2018-05-04 00:00:00",
       "时长":142,
       "年代":2018,
       "评分":np.nan,
       "首映地点":"美国"}
s = pd.Series(dit)
s.name = 38738
s
名字                   复仇者联盟3
投票人数                 123456
类型                    剧情/科幻
产地                       美国
上映时间    2018-05-04 00:00:00
时长                      142
年代                     2018
评分                      NaN
首映地点                     美国
Name: 38738, dtype: object
df = df.append(s) #覆盖掉原来的数据重新进行赋值
df[-5:]
名字投票人数类型产地上映时间时长年代评分首映地点
387341935年57.0喜剧/歌舞美国1935-03-15 00:00:009819357.6美国
38735血溅画屏95.0剧情/悬疑/犯罪/武侠/古装中国大陆1905-06-08 00:00:009119867.1美国
38736魔窟中的幻想51.0惊悚/恐怖/儿童中国大陆1905-06-08 00:00:007819868.0美国
38737列宁格勒围困之星火战役 Блокада: Фильм 2: Ленинградский ме...32.0剧情/战争苏联1905-05-30 00:00:009719776.6美国
38738复仇者联盟3123456.0剧情/科幻美国2018-05-04 00:00:001422018NaN美国
删除一行
df = df.drop([38738])
df[-5:]
名字投票人数类型产地上映时间时长年代评分首映地点
38733神学院 S46.0Adult法国1905-06-05 00:00:005819838.6美国
387341935年57.0喜剧/歌舞美国1935-03-15 00:00:009819357.6美国
38735血溅画屏95.0剧情/悬疑/犯罪/武侠/古装中国大陆1905-06-08 00:00:009119867.1美国
38736魔窟中的幻想51.0惊悚/恐怖/儿童中国大陆1905-06-08 00:00:007819868.0美国
38737列宁格勒围困之星火战役 Блокада: Фильм 2: Ленинградский ме...32.0剧情/战争苏联1905-05-30 00:00:009719776.6美国

列操作

df.columns
Index(['名字', '投票人数', '类型', '产地', '上映时间', '时长', '年代', '评分', '首映地点'], dtype='object')
df["名字"][:5] #后面中括号表示只想看到的行数,下同
0    肖申克的救赎
1      控方证人
2     美丽人生 
3      阿甘正传
4      霸王别姬
Name: 名字, dtype: object
df[["名字","类型"]][:5]
名字类型
0肖申克的救赎剧情/犯罪
1控方证人剧情/悬疑/犯罪
2美丽人生剧情/喜剧/爱情
3阿甘正传剧情/爱情
4霸王别姬剧情/爱情/同性
增加一列
df["序号"] = range(1,len(df)+1) #生成序号的基本方式【左闭右开】
df[:5]
名字投票人数类型产地上映时间时长年代评分首映地点序号
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节1
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国2
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.5意大利3
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映4
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港5
删除一列
df = df.drop("序号",axis = 1) #axis指定方向,0为行1为列,默认为0
df[:5]
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.5意大利
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港
通过标签选择数据

df.loc[[index],[colunm]]通过标签选择数据

df.loc[1,"名字"]
'控方证人'
df.loc[[1,3,5,7,9],["名字","评分"]] #多行跳行多列跳列选择
名字评分
1控方证人9.5
3阿甘正传9.4
5泰坦尼克号9.4
7新世纪福音战士剧场版:Air/真心为你 新世紀エヴァンゲリオン劇場版 Ai9.4
9这个杀手不太冷9.4

条件选择

选取产地为美国的所有电影
df[df["产地"] == "美国"][:5] #内部为bool
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
5泰坦尼克号157074.0剧情/爱情/灾难美国2012-04-10 00:00:0019420129.4中国大陆
6辛德勒的名单306904.0剧情/历史/战争美国1993-11-30 00:00:0019519939.4华盛顿首映
选取产地为美国的所有电影,并且评分大于9分的电影
df[(df.产地 == "美国") & (df.评分 > 9)][:5] #df.标签:更简洁的写法
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
5泰坦尼克号157074.0剧情/爱情/灾难美国2012-04-10 00:00:0019420129.4中国大陆
6辛德勒的名单306904.0剧情/历史/战争美国1993-11-30 00:00:0019519939.4华盛顿首映
选取产地为美国或中国大陆的所有电影,并且评分大于9分
df[((df.产地 == "美国") | (df.产地 == "中国大陆")) & (df.评分 > 9)][:5]
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港
5泰坦尼克号157074.0剧情/爱情/灾难美国2012-04-10 00:00:0019420129.4中国大陆

1.5 缺失值及异常值处理

缺失值处理方法:

方法说明
dropna根据标签中的缺失值进行过滤,删除缺失值
fillna对缺失值进行填充
isnull返回一个布尔值对象,判断哪些值是缺失值
notnullisnull的否定式

判断缺失值

df[df["名字"].isnull()][:10]#【名字是nan】
名字投票人数类型产地上映时间时长年代评分首映地点
231NaN144.0纪录片/音乐韩国2011-02-02 00:00:009020119.7美国
361NaN80.0短片其他1905-05-17 00:00:00419645.7美国
369NaN5315.0剧情日本2004-07-10 00:00:0011120047.5日本
372NaN263.0短片/音乐英国1998-06-30 00:00:003419989.2美国
374NaN47.0短片其他1905-05-17 00:00:00319646.7美国
375NaN1193.0短片/音乐法国1905-07-01 00:00:001020107.7美国
411NaN32.0短片其他1905-05-17 00:00:00319647.0美国
432NaN1081.0剧情/动作/惊悚/犯罪美国2016-02-26 00:00:0011520166.0美国
441NaN213.0恐怖美国2007-03-06 00:00:008320073.2美国
448NaN110.0纪录片荷兰2002-04-19 00:00:004820009.3美国
# print(df["名字"].notnull())
df[df["名字"].notnull()][:5]#【名字非nan】
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.6多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.5美国
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.5意大利
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.4洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.4香港

填充缺失值

df[df["评分"].isnull()][:10] #注意这里特地将前面加入的复仇者联盟令其评分缺失来举例
名字投票人数类型产地上映时间时长年代评分首映地点
38738复仇者联盟3123456.0剧情/科幻美国2018-05-04 00:00:001422018NaN美国
df["评分"].fillna(np.mean(df["评分"]), inplace = True) #使用均值来进行替代,inplace意为直接在原始数据中进行修改
df[-5:]
名字投票人数类型产地上映时间时长年代评分首映地点
387341935年57.0喜剧/歌舞美国1935-03-15 00:00:009819357.600000美国
38735血溅画屏95.0剧情/悬疑/犯罪/武侠/古装中国大陆1905-06-08 00:00:009119867.100000美国
38736魔窟中的幻想51.0惊悚/恐怖/儿童中国大陆1905-06-08 00:00:007819868.000000美国
38737列宁格勒围困之星火战役 Блокада: Фильм 2: Ленинградский ме...32.0剧情/战争苏联1905-05-30 00:00:009719776.600000美国
38738复仇者联盟3123456.0剧情/科幻美国2018-05-04 00:00:0014220186.935704美国
df1 = df.fillna("未知电影") #谨慎使用,除非确定所有的空值都是在一列中,否则所有的空值都会填成这个
#不可采用df["名字"].fillna("未知电影")的形式,因为填写后数据格式就变了,变成Series了
df1
名字投票人数类型产地上映时间时长年代评分首映地点
0肖申克的救赎692795.0剧情/犯罪美国1994-09-10 00:00:0014219949.600000多伦多电影节
1控方证人42995.0剧情/悬疑/犯罪美国1957-12-17 00:00:0011619579.500000美国
2美丽人生327855.0剧情/喜剧/爱情意大利1997-12-20 00:00:0011619979.500000意大利
3阿甘正传580897.0剧情/爱情美国1994-06-23 00:00:0014219949.400000洛杉矶首映
4霸王别姬478523.0剧情/爱情/同性中国大陆1993-01-01 00:00:0017119939.400000香港
5泰坦尼克号157074.0剧情/爱情/灾难美国2012-04-10 00:00:0019420129.400000中国大陆
6辛德勒的名单306904.0剧情/历史/战争美国1993-11-30 00:00:0019519939.400000华盛顿首映
7新世纪福音战士剧场版:Air/真心为你 新世紀エヴァンゲリオン劇場版 Ai24355.0剧情/动作/科幻/动画/奇幻日本1997-07-19 00:00:008719979.400000日本
8银魂完结篇:直到永远的万事屋 劇場版 銀魂 完結篇 万事屋よ21513.0剧情/动画日本2013-07-06 00:00:0011020139.400000日本
9这个杀手不太冷662552.0剧情/动作/犯罪法国1994-09-14 00:00:0013319949.400000法国
10灿烂人生16807.0剧情/爱情/家庭意大利2003-06-22 00:00:0036620039.300000美国
11疯狂动物城284652.0喜剧/动作/动画/冒险美国2016-03-04 00:00:0010920169.300000中国大陆/美国
12福音战士新剧场版:破 ヱヴァンゲリヲン新劇場版:32524.0剧情/动作/科幻/动画日本2009-06-27 00:00:0010820099.300000美国
13海豚湾159302.0纪录片美国2009-07-31 00:00:009220099.300000美国
14回忆积木小屋 つみきのい93384.0剧情/动画/短片日本2008-06-10 00:00:001220089.300000美国
15机器人总动员421734.0喜剧/爱情/科幻/动画/冒险美国2008-06-27 00:00:009820089.300000美国
16十二怒汉134949.0剧情美国1957-04-01 00:00:009619579.300000美国
17旅行到宇宙边缘10044.0纪录片美国2008-11-07 00:00:009020089.300000美国
18父与女53358.0剧情/动画/短片英国2001-05-27 00:00:006020019.200000美国
19暴力云与送子鹳75567.0喜剧/动画/短片/奇幻美国2009-05-29 00:00:00620099.200000美国
20城市之光31105.0剧情/喜剧/爱情美国1931-01-30 00:00:008719319.200000美国
21大闹天宫74881.0动画/奇幻中国大陆1905-05-14 00:00:0011419619.200000上集
22盗梦空间642134.0剧情/动作/科幻/悬疑/冒险美国2010-09-01 00:00:0014820109.200000中国大陆
23放牛班的春天370585.0剧情/音乐/儿童法国2004-10-16 00:00:009720049.200000中国大陆
24海上钢琴师501153.0剧情/音乐意大利1998-10-28 00:00:0016519989.200000意大利
25家园32717.0纪录片法国2009-06-05 00:00:0011820099.200000美国
26教父280871.0剧情/犯罪美国1972-03-15 00:00:0017519729.200000纽约首映
27乱世佳人226131.0剧情/爱情/战争美国1939-12-15 00:00:0023819399.200000亚特兰大首映
28千与千寻 千と千尋の神隠525505.0剧情/动画/奇幻日本2001-07-20 00:00:0012520019.200000日本
29穹顶之下51113.0纪录片中国大陆2015-02-28 00:00:0010420159.200000中国大陆
..............................
38709孟菲斯美女号1627.0剧情/动作/战争英国1990-09-07 00:00:0010719908.400000美国
38710末路英雄半世情216.0剧情英国1990-11-01 00:00:0012619908.100000美国
38711活死人之夜1326.0恐怖美国1990-10-19 00:00:009219906.800000美国
38712省港旗兵3:逃出香港 省港旗兵第1399.0动作中国香港1989-01-12 00:00:0010019896.100000香港
38713危险之至85.0剧情/动作/悬疑美国1989-01-13 00:00:0010019898.000000美国
38714拯救首相111.0动作/战争意大利1989-12-22 00:00:008519897.700000美国
38715二二六568.0剧情/动作/战争日本1989-06-17 00:00:0011419896.900000美国
38716华沙谍战719.0动作/传记/犯罪波兰2014-02-07 00:00:0012820147.000000波兰
38717地狱·天堂171.0恐怖中国大陆1905-06-11 00:00:008919896.200000美国
38718达摩为何东渡?291.0剧情韩国1989-09-23 00:00:0017519898.100000韩国
38719天伦乐99.0剧情美国1988-09-02 00:00:009919888.500000美国
38720青春禁忌游戏 Дорогая Елена Сергее118.0剧情苏联1988-04-12 00:00:009419889.100000美国
38721安迪·沃霍尔40.0纪录片/传记英国1987-06-09 00:00:007619878.100000美国
38722青春传奇175.0剧情/音乐/传记美国1987-07-24 00:00:0010819878.200000美国
38723我要求审判102.0剧情/惊悚美国1987-11-20 00:00:0011619878.200000美国
38724跷家的一夜82.0喜剧/动作/惊悚/冒险美国1987-07-01 00:00:0010219877.800000美国
38725黑皮与白牙 黑皮與白106.0剧情中国台湾1987-02-01 00:00:009719878.000000美国
38726零下的激情199.0剧情/爱情/犯罪美国1987-11-06 00:00:009819877.400000美国
38727T省的八四、八五380.0剧情中国大陆1905-06-08 00:00:009419868.700000美国
38728离别秋波240.0剧情/爱情/音乐美国1986-02-19 00:00:009019868.200000美国
38729失踪的女中学生101.0儿童中国大陆1905-06-08 00:00:0010219867.400000美国
38730喧闹村的孩子们36.0家庭瑞典1986-12-06 00:00:00920019868.700000瑞典
38731血战台儿庄2908.0战争中国大陆1905-06-08 00:00:0012019868.100000美国
38732极乐森林45.0纪录片美国1986-09-14 00:00:009019868.100000美国
38733神学院 S46.0Adult法国1905-06-05 00:00:005819838.600000美国
387341935年57.0喜剧/歌舞美国1935-03-15 00:00:009819357.600000美国
38735血溅画屏95.0剧情/悬疑/犯罪/武侠/古装中国大陆1905-06-08 00:00:009119867.100000美国
38736魔窟中的幻想51.0惊悚/恐怖/儿童中国大陆1905-06-08 00:00:007819868.000000美国
38737列宁格勒围困之星火战役 Блокада: Фильм 2: Ленинградский ме...32.0剧情/战争苏联1905-05-30 00:00:009719776.600000美国
38738复仇者联盟3123456.0剧情/科幻美国2018-05-04 00:00:0014220186.935704美国

38739 rows × 9 columns

df1[df1["名字"].isnull()][:10]
名字投票人数类型产地上映时间时长年代评分首映地点

删除缺失值

df.dropna() 参数

how = 'all':删除全为空值的行或列
inplace = True: 覆盖之前的数据
axis = 0: 选择行或列,默认是行
len(df)
38176
df2 = df.dropna()
len(df2)
38176
df.dropna(inplace = True)
len(df) #inplace覆盖掉原来的值
38176

处理异常值

异常值,即在数据集中存在不合理的值,又称离群点。比如年龄为-1,笔记本电脑重量为1吨等,都属于异常值的范围。

df[df["投票人数"] < 0] #直接删除,或者找原始数据来修正都行
名字投票人数类型产地上映时间时长年代评分首映地点
19777皇家大贼 皇家大-80.0剧情/犯罪中国香港1985-05-31 00:00:006019856.3美国
19786日本的垃圾去中国大陆 にっぽんの“ゴミ” 大陆へ渡る ~中国式リサイクル錬-80.0纪录片日本1905-06-26 00:00:006020047.9美国
19797女教徒-118.0剧情法国1966-05-06 00:00:0013519667.8美国
df[df["投票人数"] % 1 != 0] #小数异常值
名字投票人数类型产地上映时间时长年代评分首映地点
19791女教师 女教8.30剧情/犯罪日本1977-10-29 00:00:0010019776.6日本
19804女郎漫游仙境 ドレミファ娘の血は騒5.90喜剧/歌舞日本1985-11-03 00:00:008019856.7日本
19820女仆日记12.87剧情法国2015-04-01 00:00:009620155.7法国
38055逃出亚卡拉12.87剧情/动作/惊悚/犯罪美国1979-09-20 00:00:0011219797.8美国

对于异常值,一般来说数量都会很少,在不影响整体数据分布的情况下,我们直接删除就可以了

其他属性的异常值处理,我们会在格式转换部分,进一步讨论

df = df[df.投票人数 > 0]
df = df[df["投票人数"] % 1 == 0]#【重新赋值,删除异常值】

1.6 数据保存

数据处理之后,然后将数据重新保存到movie_data.xlsx

df.to_excel("movie_data.xlsx") #默认路径为现在文件夹所在的路径

第三次课作业

(1)Pandas基础知识

(1)用字典数据类型创建DataFrame。
data={‘state’:[‘a’,‘b’,‘c’,‘d’],
‘year’:[1991,1992,1993,1994],
‘pop’:[6,7,8,9]}

import pandas as pd
import numpy as np
data={'state':['a','b','c','d'], 'year':[1991,1992,1993,1994], 'pop':[6,7,8,9]}
df=pd.DataFrame(data)
df
stateyearpop
0a19916
1b19927
2c19938
3d19949

(2)将创建的Dataframe的索引设置为,ABCD。并且命名为“索引”。

df.index=['A','B','C','D']
df.index.name="索引"
# df.columns=["1","11","111"]
df
stateyearpop
索引
Aa19916
Bb19927
Cc19938
Dd19949

(3)在下面新增一行。然后删除。

dic={"state":'f',"year":'2022',"pop":'10'}
s=pd.Series(dic)
s.name='E'
df=df.append(s)
print(df)
df=df.drop(['E'])
print(df)
   state  year pop
索引                
A      a  1991   6
B      b  1992   7
C      c  1993   8
D      d  1994   9
E      f  2022  10
   state  year pop
索引                
A      a  1991   6
B      b  1992   7
C      c  1993   8
D      d  1994   9

(4)增加新的属性列,列名设置为‘port’,值均为1。

df["port"]=1
df
stateyearpopport
索引
Aa199161
Bb199271
Cc199381
Dd199491

(5)取出1991和1994年的数据。

print(df.dtypes)
df[(df["year"]==1991) | (df["year"]==1994)]
# df
state    object
year     object
pop      object
port      int64
dtype: object
stateyearpopport
索引
Aa199161
Dd199491

(6)获取前‘state’和‘year’的数据。

df[["state","year"]]
stateyear
索引
Aa1991
Bb1992
Cc1993
Dd1994

(7)查看每一列数据的数据格式,并且将‘pop’每个数据乘2。

for i in df:
    print(df[i].dtypes)
df.pop=df["pop"]*2
df
object
object
object
int64
stateyearpopport
索引
Aa1991121
Bb1992141
Cc1993161
Dd1994181

(2)数据操作

(1)读取香港酒店数据。

path="T:/WTcrazy_Python/Python/作业3/香港酒店数据.xlsx"
data=pd.read_excel(path)
df=pd.DataFrame(data)
df[:20]
字段1字段2字段3字段4字段5字段6字段7字段8
NaNNaNNaNNaNNaNNaNNaNNaNNaN
0.0香港嘉湖海逸酒店(Harbour Plaza Resort City)休闲度假香港元朗天水围 天恩路18号4.617604.0422.0
1.0香港铜锣湾皇悦酒店(Empire Hotel Hong Kong-Causeway Bay)浪漫情侣香港东区铜锣湾永兴街8号4.512708.0693.0
2.0香港碧荟酒店(The BEACON)商务出行香港油尖旺九龙旺角洗衣街88号4.7328.0747.0
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.45014.0693.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.63427.0581.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.51938.0869.0
6.0海景嘉福洲际酒店(InterContinental Grand Stanford Hong ...海滨风光香港油尖旺尖沙咀東部麽地道70号4.74366.01296.0
7.0香港怡东酒店(Excelsior Hotel)海滨风光香港湾仔铜锣湾告士打道281号4.66961.01184.0
8.0香港富豪九龙酒店(Regal Kowloon Hotel)休闲度假香港油尖旺尖沙嘴麽地道71号4.511265.0692.0
9.0港岛香格里拉大酒店(Island Shangri-La)海滨风光香港中西区金钟中区法院道太古广场4.84182.02836.0
10.0香港广易商务宾馆(家庭旅馆)(WIDE EVER HOSTEL)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦14楼16单位4.11029.0218.0
11.0香港铜锣湾皇冠假日酒店(Crowne Plaza Hong Kong Causeway Bay)休闲度假香港湾仔铜锣湾礼顿道八号4.74446.01633.0
12.0香港都会海逸酒店(Harbour Plaza Metropolis)海滨风光香港油尖旺红磡 都会道7号4.514872.0562.0
13.0如心南湾海景酒店(L‘hotel Island South)休闲度假香港南区香港仔黄竹坑道55号4.49573.0447.0
14.0香港朗廷酒店(The Langham Hong Kong)休闲度假香港油尖旺尖沙嘴北京道8号4.711039.01899.0
15.0迪士尼探索家度假酒店(Disney Explorers Lodge)海滨风光香港离岛迪士尼乐园度假区4.84794.01662.0
16.0香港港丽酒店(Conrad Hong Kong)海滨风光香港中西区金钟 金钟道88号太古广场4.72392.02490.0
17.0香港美丽华酒店(The Mira Hong Kong)休闲度假香港九龙城尖沙咀弥敦道118-130号美丽华广场4.65882.01583.0
18.0香港悦来酒店(Panda Hotel)休闲度假香港荃湾荃湾 荃华街3号4.513694.0358.0
19.0香港文华东方酒店(Mandarin Oriental Hong Kong)海滨风光香港中西区中环干诺道中5号4.82452.03609.0
20.0香港恒丰酒店(Prudential Hotel)浪漫情侣香港油尖旺尖沙嘴 弥敦道222号4.58194.0692.0

(2)按照数据的内容,重新设置数据的索引,重新设置列名称为’名字’,‘类型’,‘城市’,‘地区’,‘地点’,‘评分’,‘评分人数’,‘价格’。

df.columns= ["名字", "类型", "城市", "地区", "地点", "评分", "评分人数", "价格"]
df[:10]
名字类型城市地区地点评分评分人数价格
NaNNaNNaNNaNNaNNaNNaNNaNNaN
0.0香港嘉湖海逸酒店(Harbour Plaza Resort City)休闲度假香港元朗天水围 天恩路18号4.617604.0422.0
1.0香港铜锣湾皇悦酒店(Empire Hotel Hong Kong-Causeway Bay)浪漫情侣香港东区铜锣湾永兴街8号4.512708.0693.0
2.0香港碧荟酒店(The BEACON)商务出行香港油尖旺九龙旺角洗衣街88号4.7328.0747.0
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.45014.0693.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.63427.0581.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.51938.0869.0
6.0海景嘉福洲际酒店(InterContinental Grand Stanford Hong ...海滨风光香港油尖旺尖沙咀東部麽地道70号4.74366.01296.0
7.0香港怡东酒店(Excelsior Hotel)海滨风光香港湾仔铜锣湾告士打道281号4.66961.01184.0
8.0香港富豪九龙酒店(Regal Kowloon Hotel)休闲度假香港油尖旺尖沙嘴麽地道71号4.511265.0692.0
9.0港岛香格里拉大酒店(Island Shangri-La)海滨风光香港中西区金钟中区法院道太古广场4.84182.02836.0
10.0香港广易商务宾馆(家庭旅馆)(WIDE EVER HOSTEL)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦14楼16单位4.11029.0218.0

(3)查看所有类型为“浪漫情侣”的酒店

df[df["类型"]=="浪漫情侣"]
名字类型城市地区地点评分评分人数价格
1.0香港铜锣湾皇悦酒店(Empire Hotel Hong Kong-Causeway Bay)浪漫情侣香港东区铜锣湾永兴街8号4.512708.0693.0
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.45014.0693.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.63427.0581.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.51938.0869.0
20.0香港恒丰酒店(Prudential Hotel)浪漫情侣香港油尖旺尖沙嘴 弥敦道222号4.58194.0692.0
23.0香港南洋酒店(South Pacific Hotel)浪漫情侣香港湾仔摩理臣山道23号4.57981.0445.0
24.0香港城景国际(The Cityview)浪漫情侣香港油尖旺窝打老道23号4.58648.0594.0
27.0香港粤海酒店(GDH Hotel)浪漫情侣香港油尖旺尖沙咀宝勒巷18号4.49066.0748.0
28.0香港荃湾丝丽酒店(Silka Tsuen Wan Hong Kong)浪漫情侣香港荃湾葵涌和宜合道119号4.41110.0370.0
31.0香港凯都酒店(Metro Winner Hotel)浪漫情侣香港油尖旺九龙油麻地弥敦道476号凯都中心4.53355.0587.0
34.0香港彩鸿酒店(Travelodge Kowloon)浪漫情侣香港油尖旺九龙佐敦道西贡街23号4.53136.0454.0
35.0香港遨舍卫兰轩(OZO Wesley Hong Kong)浪漫情侣香港湾仔湾仔轩尼诗道22号4.63283.0871.0
43.0香港荃湾旭逸酒店(Hotel Ease Tsuen Wan)浪漫情侣香港葵青葵涌圳边街15-19号4.4598.0394.0
44.0香港一零八馆(Hotel 108 Hong Kong)浪漫情侣香港九龙城九龙旺角豉油街108号4.6725.0737.0
45.0香港油麻地王子酒店(Kings Hotel)浪漫情侣香港油尖旺九龙油麻地庙街50号4.21128.0348.0
48.0香港云浦酒店(VP Hotel)浪漫情侣香港油尖旺九龙荔枝角道149号4.32226.0298.0
50.0香港TUVE酒店(Hotel TUVE)浪漫情侣香港东区香港天后清风街16号4.51236.01908.0
51.0木的地酒店(Hotel Madera Hong Kong)浪漫情侣香港油尖旺九龙佐敦长乐街1号4.52626.0871.0
53.0香港旺角荟贤居(如心酒店集团管理)(Lodgewood by L‘hotel Mongkok...浪漫情侣香港油尖旺香港九龙旺角广东道1131号4.63923.0581.0
54.0香港客舍酒店(Hotel Hart)浪漫情侣香港九龙城尖沙咀赫德道4号4.4392.0349.0
67.0香港星网商务精品酒店(Wifi Boutique Hotel)浪漫情侣香港湾仔湾仔 骆克道366号4.41527.0412.0
72.0香港丽骏酒店(Brighton Hotel Hong Kong)浪漫情侣香港湾仔湾仔骆克道128号4.52383.01152.0
104.0香港金域假日酒店(Holiday Inn Golden Mile)浪漫情侣香港油尖旺尖沙嘴弥敦道50号4.55308.01038.0
123.0香港逸兰精品酒店(Lanson Place Hotel)浪漫情侣香港湾仔铜锣湾礼顿道133号4.72053.01349.0
125.0华丽酒店尖沙咀 (贝斯特韦斯特酒店)(Best Western Grand Hotel)浪漫情侣香港油尖旺九龙尖沙咀柯士甸路廿三号4.49128.0517.0
126.0香港帝国酒店(Imperial Hotel)浪漫情侣香港油尖旺尖沙嘴弥敦道32-34号4.15658.0526.0
128.0香港珀丽酒店(Rosedale Hotel Hong Kong)浪漫情侣香港湾仔铜锣湾信德街8号4.47342.0457.0
131.0香港富荟马头围酒店(iclub Ma Tau Wai Hotel)浪漫情侣香港九龙城马头围下乡道8号4.4751.0445.0
133.0英皇骏景酒店(香港湾仔店)(The Emperor Hotel)浪漫情侣香港湾仔皇后大道东373号4.51040.0526.0
137.0香港富荟炮台山酒店(iclub Fortress Hill Hotel)浪漫情侣香港东区北角麥連街18號4.56441.0516.0
...........................
160.0香港铜锣湾智选假日酒店(Holiday Inn Express Hong Kong Caus...浪漫情侣香港湾仔铜锣湾 霎东街33号4.54550.0774.0
166.0香港宝御酒店(Hotel Pravo)浪漫情侣香港油尖旺九龙尖沙咀北京道10号4.52631.0766.0
169.0香港屯门贝尔特酒店(pentahotel Hong Kong Tuen Mun)浪漫情侣香港屯门新界屯门震寰路六号4.5998.0582.0
170.0香港逸林酒店(Noblepark Hotel Hong Kong)浪漫情侣香港油尖旺九龙油麻地茂林街2号4.23235.0318.0
172.0香港伟晴轩(West Hotel)浪漫情侣香港油尖旺九龙油麻地佐敦道伟晴街39号4.44886.0771.0
173.0香港富荟上环酒店(iclub Sheung Wan Hotel)浪漫情侣香港中西区上环文咸东街138号4.54373.0596.0
174.0圣地亚哥酒店(San Diego Hotel)浪漫情侣香港油尖旺佐敦吴松街169-189号4.53466.0712.0
177.0最佳盛品酒店(香港尖沙咀店)(原九龙华美达酒店)(Best Western Plus Hot...浪漫情侣香港油尖旺尖沙嘴漆咸道南73-75号4.24027.0480.0
180.0香港旺角希尔顿花园酒店(Hilton Garden Inn Hong Kong Mongkok)浪漫情侣香港油尖旺旺角豉油街2号4.52737.01161.0
182.0香港问月酒店(Mira Moon Hong Kong)浪漫情侣香港湾仔谢斐道388号4.51044.01282.0
183.0帆船精品酒店(VELA BOUTIQUE HOTEL)浪漫情侣香港湾仔摩理臣山道84-86号4.22063.0413.0
184.0铜锣湾迷你精品酒店(Mini Hotel Causeway Bay)浪漫情侣香港湾仔铜锣湾新会道8号4.34882.0368.0
192.0香港红茶馆酒店(红磡温思路街)(Bridal Tea House Hotel (Hung H...浪漫情侣香港九龙城九龙紅磡温思劳街57A-61号4.02559.0225.0
196.0香港C酒店(Casa Hotel)浪漫情侣香港油尖旺九龙油麻地弥敦道487-489号4.34986.0334.0
197.0香港华大盛品酒店(BEST WESTERN PLUS Hotel Hong Kong)浪漫情侣香港中西区西环德辅道西308号4.33498.0528.0
201.0香港青逸酒店(Rambler Oasis Hotel)浪漫情侣香港葵青青衣路1号4.03091.0349.0
203.0香港海景丝丽酒店(Silka Seaview Hotel)浪漫情侣香港油尖旺油麻地 上海街268号(268 Shanghai Street, Yau Ma Tei, K...4.34561.0410.0
204.0香港中环迷你酒店(Mini Hotel Central)浪漫情侣香港中西区中环雪厂街三十八号4.02406.0436.0
208.0香港珀丽尚品酒店(Le Petit Rosedale Hotel Hong Kong)浪漫情侣香港中西区铜锣湾摩顿台7号4.51181.0636.0
214.0香港华逸酒店(Rambler Garden Hotel)浪漫情侣香港葵青青衣 青衣路1号4.03031.0349.0
216.0香港文化旅馆-翠雅山房(Hong Kong Heritage Lodge)浪漫情侣香港葵青香港九龙青山道800号4.41726.0423.0
217.0香港君临海域酒店(Gloucester Hotel)浪漫情侣香港湾仔铜锣湾告士打道218号4.52324.0957.0
218.0香港逸豪酒店(H1 Hotel)浪漫情侣香港油尖旺九龙旺角新填地街423号4.32892.0498.0
227.0香港红茶馆酒店(油麻地鸦打街店)(Bridal Tea House Hotel (Yau M...浪漫情侣香港油尖旺香港九龙油麻地鸦打街6号4.15718.0NaN
228.0香港仕德福山景酒店(Stanford Hillview Hotel)浪漫情侣香港油尖旺尖沙嘴 天文台道13-17号4.72986.0581.0
234.0香港金坊宾馆(GOLD PALACE HOTEL)浪漫情侣香港NaN香港油尖旺区九龙旺角弥敦道607号新兴大厦22字楼2201室4.7436.0245.0
240.0香港登台酒店(HOTEL STAGE)浪漫情侣香港油尖旺佐敦志和街1号4.7962.01084.0
246.0香港红茶馆酒店(鸭脷洲大街店)(Bridal Tea House Hotel (Ap Lei...浪漫情侣香港南区港岛鸭脷洲大街95号4.21203.0377.0
247.0香港乐仕酒店(Acesite Knutsford Hotel)浪漫情侣香港油尖旺九龙尖沙咀天文台围8号4.21879.0237.0
259.0香港旺角新天地酒店(Mong Kok Sunny Day Hotel)浪漫情侣香港油尖旺香港九龍旺角新填地街419號4.3784.0949.0

69 rows × 8 columns

(4)查看所有类型为“浪漫情侣”,地区在湾仔的酒店

df[(df["类型"] == "浪漫情侣") & (df["地区"] == "湾仔")]
名字类型城市地区地点评分评分人数价格
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.45014.0693.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.51938.0869.0
23.0香港南洋酒店(South Pacific Hotel)浪漫情侣香港湾仔摩理臣山道23号4.57981.0445.0
35.0香港遨舍卫兰轩(OZO Wesley Hong Kong)浪漫情侣香港湾仔湾仔轩尼诗道22号4.63283.0871.0
67.0香港星网商务精品酒店(Wifi Boutique Hotel)浪漫情侣香港湾仔湾仔 骆克道366号4.41527.0412.0
72.0香港丽骏酒店(Brighton Hotel Hong Kong)浪漫情侣香港湾仔湾仔骆克道128号4.52383.01152.0
123.0香港逸兰精品酒店(Lanson Place Hotel)浪漫情侣香港湾仔铜锣湾礼顿道133号4.72053.01349.0
128.0香港珀丽酒店(Rosedale Hotel Hong Kong)浪漫情侣香港湾仔铜锣湾信德街8号4.47342.0457.0
133.0英皇骏景酒店(香港湾仔店)(The Emperor Hotel)浪漫情侣香港湾仔皇后大道东373号4.51040.0526.0
159.0香港华丽铜锣湾酒店(原香港华丽精品酒店)(Best Western Hotel Causew...浪漫情侣香港湾仔铜锣湾坚拿道西祥和里4.25707.0309.0
160.0香港铜锣湾智选假日酒店(Holiday Inn Express Hong Kong Caus...浪漫情侣香港湾仔铜锣湾 霎东街33号4.54550.0774.0
182.0香港问月酒店(Mira Moon Hong Kong)浪漫情侣香港湾仔谢斐道388号4.51044.01282.0
183.0帆船精品酒店(VELA BOUTIQUE HOTEL)浪漫情侣香港湾仔摩理臣山道84-86号4.22063.0413.0
184.0铜锣湾迷你精品酒店(Mini Hotel Causeway Bay)浪漫情侣香港湾仔铜锣湾新会道8号4.34882.0368.0
217.0香港君临海域酒店(Gloucester Hotel)浪漫情侣香港湾仔铜锣湾告士打道218号4.52324.0957.0

(5)查看所有地址在观塘或者油尖旺,评分大于4的酒店

df[((df["地区"] == "观塘") | (df["地区"] == "油尖旺")) & (df["评分"] > 4)]
名字类型城市地区地点评分评分人数价格
2.0香港碧荟酒店(The BEACON)商务出行香港油尖旺九龙旺角洗衣街88号4.7328.0747.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.63427.0581.0
6.0海景嘉福洲际酒店(InterContinental Grand Stanford Hong ...海滨风光香港油尖旺尖沙咀東部麽地道70号4.74366.01296.0
8.0香港富豪九龙酒店(Regal Kowloon Hotel)休闲度假香港油尖旺尖沙嘴麽地道71号4.511265.0692.0
10.0香港广易商务宾馆(家庭旅馆)(WIDE EVER HOSTEL)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦14楼16单位4.11029.0218.0
12.0香港都会海逸酒店(Harbour Plaza Metropolis)海滨风光香港油尖旺红磡 都会道7号4.514872.0562.0
14.0香港朗廷酒店(The Langham Hong Kong)休闲度假香港油尖旺尖沙嘴北京道8号4.711039.01899.0
20.0香港恒丰酒店(Prudential Hotel)浪漫情侣香港油尖旺尖沙嘴 弥敦道222号4.58194.0692.0
24.0香港城景国际(The Cityview)浪漫情侣香港油尖旺窝打老道23号4.58648.0594.0
26.0香港峰景轩(Summit View Kowloon)交通方便香港油尖旺旺角 文福道5号4.6152.0421.0
27.0香港粤海酒店(GDH Hotel)浪漫情侣香港油尖旺尖沙咀宝勒巷18号4.49066.0748.0
29.0香港悦品海景酒店(原观塘丽东酒店)(Hotel COZI Harbour view)海滨风光香港观塘九龙官塘伟业街163號4.41581.0484.0
30.0香港帝京酒店(Royal Plaza Hotel)休闲度假香港油尖旺旺角太子道西193号4.79309.01525.0
31.0香港凯都酒店(Metro Winner Hotel)浪漫情侣香港油尖旺九龙油麻地弥敦道476号凯都中心4.53355.0587.0
32.0香港旺角帝盛酒店(Dorsett Mongkok Hong Kong)亲子酒店香港油尖旺88号大角嘴道4.62885.0567.0
34.0香港彩鸿酒店(Travelodge Kowloon)浪漫情侣香港油尖旺九龙佐敦道西贡街23号4.53136.0454.0
40.0香港九龙诺富特酒店(Novotel Nathan Road Kowloon Hong Kong)休闲度假香港油尖旺油麻地 弥敦道348号4.63931.01307.0
41.0香港大都酒店(Dadol Hotel)商务出行香港油尖旺九龙尖沙咀金巴利道16号香槟大厦1字楼 (美丽华商场对面)4.1356.0401.0
45.0香港油麻地王子酒店(Kings Hotel)浪漫情侣香港油尖旺九龙油麻地庙街50号4.21128.0348.0
46.0香港新式酒店(家庭旅馆)(Hong Kong New Style Hotel)地铁周边香港油尖旺九龙旺角弥敦道603-609A号新兴大厦16034.51566.0199.0
47.0香港朗逸酒店(Largos Hotel)地铁周边香港油尖旺佐敦 南京街30号4.52823.0622.0
48.0香港云浦酒店(VP Hotel)浪漫情侣香港油尖旺九龙荔枝角道149号4.32226.0298.0
51.0木的地酒店(Hotel Madera Hong Kong)浪漫情侣香港油尖旺九龙佐敦长乐街1号4.52626.0871.0
52.0香港金岛宾馆(Golden Island Hotel)地铁周边香港油尖旺九龙弥敦道385号平安大厦7字楼1室4.31855.099.0
53.0香港旺角荟贤居(如心酒店集团管理)(Lodgewood by L‘hotel Mongkok...浪漫情侣香港油尖旺香港九龙旺角广东道1131号4.63923.0581.0
55.0香港星星宾馆(家庭旅馆)(Star Guesthouse)地铁周边香港油尖旺尖沙咀弥敦道83-97号华源大厦8字楼B1室4.6804.0326.0
60.0香港天天旅馆(家庭旅馆)(Sunrise Hotel)地铁周边香港油尖旺弥敦道525-543宝宁大厦C座16楼16室4.41093.0229.0
61.0香港威尼斯宾馆(美丽都大厦)(Venetian Hostel)地铁周边香港油尖旺尖沙咀弥敦道58号美丽都大厦14字楼C座C1&F座F1室(前台位于13楼)于13楼C2室登记入住4.54082.0194.0
65.0香港金门宾馆(KAM MUN GUEST HOUSE)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦2109室4.61012.0228.0
68.0香港米易商务宾馆(M easy hotel)地铁周边香港油尖旺油尖旺九龙旺角地铁站E1出口弥敦道607号新兴大厦14楼1416单位4.1846.0218.0
...........................
279.0香港旺角M1酒店(M1 HOTEL MONG KOK)地铁周边香港油尖旺九龙旺角通菜街123号4.3762.0890.0
283.0香港蓝山(柏豪)(宾馆)(Lamshan)地铁周边香港油尖旺九龙旺角亚皆老街83号先施大厦13楼1306室4.3129.0294.0
285.0香港馨乐庭亚士厘服务公寓(Citadines Ashley Hong Kong)酒店公寓香港油尖旺尖沙咀亚士厘道18号4.4305.0784.0
287.0香港永盛行宾馆(Yongshenghang Motel)地铁周边香港油尖旺九龙油麻地弥敦道385号平安大厦5字楼5室4.2964.0198.0
289.0香港晶亮宾馆(家庭旅馆)(Shining Hotel)地铁周边香港油尖旺弥敦道83-97号华源大厦2字楼C3室4.3364.0325.0
293.0香港时尚酒店(尖沙咀店)(Smart Hotel)地铁周边香港油尖旺尖沙咀金巴利道27-33号永利大厦6楼D4.378.071.0
294.0香港红叶宾馆(Maple Leaf Guest House)地铁周边香港油尖旺九龙尖沙咀弥敦道36-44号重庆大厦E座12楼E4室4.31787.0176.0
298.0香港怡景宾馆(Yee King Hotel(Hostel))地铁周边香港油尖旺九龙旺角亚皆老街83号先施大厦8楼804室4.3510.0448.0
302.0香港尖沙咀(连锁)(酒店)(家庭旅馆)(TSTHOTEL)地铁周边香港油尖旺尖沙咀弥敦道87号华源大厦2号楼B1室4.2144.0316.0
305.0香港金威酒店 (家庭旅馆)(Kam Wai Hotel (Hostel))地铁周边香港油尖旺尖沙咀加拿分道33號發利大厦4樓405室4.4144.0316.0
306.0香港文苑宾馆(Man Yuen Hotel)NaN香港油尖旺旺角弥敦道737号金轮大厦二楼H室4.75.0169.0
308.0香港枫叶酒店(Maple Inn)地铁周边香港油尖旺尖沙咀弥敦道83-97号华源大厦3/F,D1室4.3608.0406.0
309.0香港广西宾馆(家庭宾馆)(GUAN GIX GUEST HOUSE)地铁周边香港油尖旺弥敦道300号华丰大厦10字楼D室4.721.0254.0
321.0香港尊贵旅馆(Hong Kong Premium Guest House)NaN香港油尖旺尖沙咀弥敦道56-58号美丽都大厦16字楼B2,A5室(前台入住办理设在16字楼A2室)4.819.0166.0
325.0香港南新雅宾馆(Nam San Ya Hostel)地铁周边香港油尖旺九龙尖沙咀弥敦道240号立信大厦13楼D室4.5136.0359.0
326.0幸福居(家庭旅馆)(Fortune Inn Hong Kong)地铁周边香港油尖旺尖沙嘴弥敦道66-70号金冠大厦9楼A室4.1243.0415.0
331.0香港好客轩宾馆(Hao‘s Inn)地铁周边香港油尖旺九龙尖沙咀弥敦道66-70金冠大厦5楼E室4.139.0395.0
334.0香港旺角住游行渡假宾馆(Geo-Home Holiday Hotel)地铁周边香港油尖旺香港九龙旺角弥敦道737号金轮大厦9楼4.513.0278.0
338.0香港新金冠宾馆(New Golden Crown Guest House)客栈香港油尖旺尖沙咀弥敦道68号金冠大厦13楼C室4.910.0395.0
342.0香港乐栈(Tempo Inn)地铁周边香港油尖旺佐敦吴松街93-103号德利楼1楼4.5137.0212.0
350.0香港伦敦旅馆(London Guest House)地铁周边香港油尖旺尖沙咀弥敦道56-58号美丽都大厦13字楼F2室4.781.0210.0
353.0香港欣林宾馆 (家庭旅馆)(Merryland Guest House)地铁周边香港油尖旺弥敦道62号美丽都大厦D座9楼D2室4.3575.0306.0
354.0香港格兰舍(Grand Inn)地铁周边香港油尖旺尖沙咀弥敦道66-70号金冠大厦十一楼F室4.3129.0252.0
355.0香港振宜酒店(CY-House)地铁周边香港油尖旺九龙旺角弥敦道731至733号振宜大厦15楼A室4.248.0329.0
360.0香港大华精品旅店 (家庭旅馆)(Tai Wah Boutique Hostel)地铁周边香港油尖旺九龙尖沙咀弥敦道62号美丽都大厦8/F A8室4.534.0220.0
363.0香港珊瑚酒店(家庭旅馆)((Coral Inn)(Hostel))地铁周边香港油尖旺香港九龙尖沙咀弥敦道83-97号华源大厦9/F十楼D2室4.4149.0379.0
372.0香港意乐旅馆(eLog Inn)地铁周边香港油尖旺佐敦道22号鸿运大厦4字楼H室4.3155.0237.0
378.0香港牛津尊贵旅舍(Oxford Premium Guest House)NaN香港油尖旺尖沙咀弥敦道56-58号美丽都大厦16字楼A2室4.715.0NaN
379.0香港恒好宾馆(Hang Ho Hostel)地铁周边香港油尖旺九龙弥敦道242号立信大厦6字楼B室4.5142.0445.0
395.0香港御珑馆(家庭旅馆)(Hotel Conext)地铁周边香港油尖旺九龙弥敦道240号立信大厦3楼B室4.2359.0317.0

139 rows × 8 columns

(6)查看类型缺失的数据

df[df["类型"].isnull()]
名字类型城市地区地点评分评分人数价格
NaNNaNNaNNaNNaNNaNNaNNaNNaN
39.0香港颐庭酒店(铜锣湾店)(Eco Tree Hotel Causeway Bay)NaN香港东区铜锣湾水星街15号4.615.0567.0
187.0工業家酒店(IND Hotel)NaN香港观塘九龙观塘观塘道326号4.26.0448.0
200.0香港永倫800酒店(WINLAND800HOTEL)NaN香港葵青新界青衣路一号3.43098.0196.0
241.0香港港湾酒店(Hong Kong Harbor Hotel)NaN香港南区香港仔石排湾道47号3.8709.0259.0
268.0香港奥斯酒店(O‘ Hotel)NaN香港九龙城香港九龙土瓜湾九龙城道42-46号3.7869.0369.0
284.0巴黎旅馆(Paris Guest House (D2, 10/F))NaN香港NaNFlat D2, 10/F, Block D, Chungking Mansion, 40 ...2.05.067.0
300.0香港海景渡假乐园(Hong Kong Seaview Holiday Resort)NaN香港离岛大屿山梅窝东湾头路11号2.95.0881.0
301.0香港海边小屋(The Cove Hostel)NaN香港离岛大屿山塘福村17D,1-2字楼NaN2.0352.0
304.0香港和平宾馆(HK Peace Guest House)NaN香港NaN尖沙咀弥敦道58号美丽都大厦13楼A5室NaNNaN201.0
306.0香港文苑宾馆(Man Yuen Hotel)NaN香港油尖旺旺角弥敦道737号金轮大厦二楼H室4.75.0169.0
315.0墨尔本宾馆(Melbourne Hostel)NaN香港NaN九龙尖沙咀弥敦道40号重庆大厦E座10字楼E1室NaN2.093.0
318.0香港百丽旅馆(Park Guest House)NaN香港油尖旺九龙尖沙咀海防道53至55号海防大厦1楼10号NaN6.0445.0
321.0香港尊贵旅馆(Hong Kong Premium Guest House)NaN香港油尖旺尖沙咀弥敦道56-58号美丽都大厦16字楼B2,A5室(前台入住办理设在16字楼A2室)4.819.0166.0
322.0香港美华宾馆(Mei Wah Guest House)NaN香港NaN九龙旺角弥敦道737号金轮大厦9字楼F座4.027.0250.0
323.0香港威尼斯宾馆NaN香港NaN香港油尖旺区旺角弥顿道580号恒隆大厦4楼4.748.0298.0
327.080后潘多拉旅馆(香港佐敦店)(原华丰宾馆)(Pandora After 80s Jordan)NaN香港油尖旺九龙佐敦佐敦道15号华丰大厦1字楼H室3.136.070.0
335.0香港Primo旅馆(Primo Guesthouse)NaN香港NaN九龙尖沙咀弥敦道40号重庆大厦E座3字楼E3室NaN1.0131.0
337.0纳里旅馆(Narli Guest House)NaN香港油尖旺尖沙咀弥敦道36-44号重庆大厦16字楼D座D8室NaNNaN175.0
343.0香港宿雾宾馆(Cebu Hotel)NaN香港NaN弥敦道36-44号重庆大厦A座17字楼A6 & A7室NaN1.0113.0
348.0美丽宾馆(Lily Guest House)NaN香港NaN九龙尖沙咀弥敦道40号重庆大厦E座8字楼E3室(于E座8楼E1室登记入住)NaNNaN165.0
364.0全球旅舍(Global Inn)NaN香港NaN弥敦道36-44号重庆大厦C座6楼C2室 (登记前台於E座8楼E1室)NaN2.0165.0
371.0珠峰宾馆(Everest Guest House (3/F))NaN香港NaN九龙尖沙咀弥敦道40号重庆大厦D座3字楼5-6室NaN1.0181.0
378.0香港牛津尊贵旅舍(Oxford Premium Guest House)NaN香港油尖旺尖沙咀弥敦道56-58号美丽都大厦16字楼A2室4.715.0NaN
381.0香港俄罗斯旅舍(Russian Hostel)NaN香港NaN香港九龙弥敦道40号重庆大厦D座16楼1室NaNNaN175.0
384.0尊贵闲庭酒店(Premium Lounge)NaN香港NaNFlat A6 & A7, 16/F, Block A, Chungking Mansion...NaN1.0166.0
399.0香港新天天酒店(Everyday Inn Hotel)NaN香港油尖旺佐敦庙街230-236号韶兴大厦5字楼B座NaNNaN350.0
403.0伍德斯托克旅馆(Woodstock Hostel)NaN香港NaNFlat A1-A6, 16/F, Block A, Chungking Mansions,...NaNNaN172.0
404.0旅客宾馆(Traveller‘s Hostel)NaN香港NaN九龙尖沙咀弥敦道40号重庆大厦A座16字楼A1& A2室NaNNaN269.0
405.0欧若旅馆(Euro Hostel)NaN香港NaNFlat 6, Block D, 17/F, Chungking Mansion,NaNNaN174.0
406.0香港Prestige旅馆(Prestige Guesthouse)NaN香港NaN弥敦道40号重庆大厦E座3字楼E1室NaNNaN122.0
411.0香港兰涛度假屋(Lantau Lodge)NaN香港荃湾大屿山水口村47A号2楼NaNNaN1035.0

(7)用“其他”填充类型和地区

df["类型"].fillna("其他",inplace=True)
df["地区"].fillna("其他",inplace=True)
df
名字类型城市地区地点评分评分人数价格
NaNNaN其他NaN其他NaNNaNNaNNaN
0.0香港嘉湖海逸酒店(Harbour Plaza Resort City)休闲度假香港元朗天水围 天恩路18号4.617604.0422.0
1.0香港铜锣湾皇悦酒店(Empire Hotel Hong Kong-Causeway Bay)浪漫情侣香港东区铜锣湾永兴街8号4.512708.0693.0
2.0香港碧荟酒店(The BEACON)商务出行香港油尖旺九龙旺角洗衣街88号4.7328.0747.0
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.45014.0693.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.63427.0581.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.51938.0869.0
6.0海景嘉福洲际酒店(InterContinental Grand Stanford Hong ...海滨风光香港油尖旺尖沙咀東部麽地道70号4.74366.01296.0
7.0香港怡东酒店(Excelsior Hotel)海滨风光香港湾仔铜锣湾告士打道281号4.66961.01184.0
8.0香港富豪九龙酒店(Regal Kowloon Hotel)休闲度假香港油尖旺尖沙嘴麽地道71号4.511265.0692.0
9.0港岛香格里拉大酒店(Island Shangri-La)海滨风光香港中西区金钟中区法院道太古广场4.84182.02836.0
10.0香港广易商务宾馆(家庭旅馆)(WIDE EVER HOSTEL)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦14楼16单位4.11029.0218.0
11.0香港铜锣湾皇冠假日酒店(Crowne Plaza Hong Kong Causeway Bay)休闲度假香港湾仔铜锣湾礼顿道八号4.74446.01633.0
12.0香港都会海逸酒店(Harbour Plaza Metropolis)海滨风光香港油尖旺红磡 都会道7号4.514872.0562.0
13.0如心南湾海景酒店(L‘hotel Island South)休闲度假香港南区香港仔黄竹坑道55号4.49573.0447.0
14.0香港朗廷酒店(The Langham Hong Kong)休闲度假香港油尖旺尖沙嘴北京道8号4.711039.01899.0
15.0迪士尼探索家度假酒店(Disney Explorers Lodge)海滨风光香港离岛迪士尼乐园度假区4.84794.01662.0
16.0香港港丽酒店(Conrad Hong Kong)海滨风光香港中西区金钟 金钟道88号太古广场4.72392.02490.0
17.0香港美丽华酒店(The Mira Hong Kong)休闲度假香港九龙城尖沙咀弥敦道118-130号美丽华广场4.65882.01583.0
18.0香港悦来酒店(Panda Hotel)休闲度假香港荃湾荃湾 荃华街3号4.513694.0358.0
19.0香港文华东方酒店(Mandarin Oriental Hong Kong)海滨风光香港中西区中环干诺道中5号4.82452.03609.0
20.0香港恒丰酒店(Prudential Hotel)浪漫情侣香港油尖旺尖沙嘴 弥敦道222号4.58194.0692.0
21.0香港北角海逸酒店(Harbour Plaza North Point)海滨风光香港东区北角 英皇道665号(665 Kings Road, North Point, Hong K...4.43980.0507.0
22.0香港帝景酒店(Royal View Hotel)海滨风光香港荃湾汀九 青山公路353号4.53289.0418.0
23.0香港南洋酒店(South Pacific Hotel)浪漫情侣香港湾仔摩理臣山道23号4.57981.0445.0
24.0香港城景国际(The Cityview)浪漫情侣香港油尖旺窝打老道23号4.58648.0594.0
25.0香港黄金海岸酒店(Hong Kong Gold Coast Hotel)海滨风光香港屯门屯门 黄金海岸青山公路1号4.76326.0696.0
26.0香港峰景轩(Summit View Kowloon)交通方便香港油尖旺旺角 文福道5号4.6152.0421.0
27.0香港粤海酒店(GDH Hotel)浪漫情侣香港油尖旺尖沙咀宝勒巷18号4.49066.0748.0
28.0香港荃湾丝丽酒店(Silka Tsuen Wan Hong Kong)浪漫情侣香港荃湾葵涌和宜合道119号4.41110.0370.0
...........................
390.0香港壹家旅馆(A INN Hostel)地铁周边香港油尖旺九龙旺角亚皆老街83号先施大厦13楼1304室(前台位于14楼)NaN1.0333.0
391.0香港水晶旅社(Crystal Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44号重庆大厦E座11楼E4室 (於E座3楼登记入住NaN3.0146.0
392.0香港传奇宾馆(Legend Guest House)地铁周边香港其他香港九龙尖沙咀弥敦道81号喜利大厦12字楼A&B室NaN2.0245.0
393.0香港加拿大人旅馆(Canadian Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44重庆大厦E座7层 (於E座3楼登记入住)NaN5.0122.0
394.0香港金沙宾馆(家庭旅馆)(Sands Hostel)地铁周边香港其他香港九龙尖沙咀弥敦道40号重庆大厦C座14楼C2室3.828.0988.0
395.0香港御珑馆(家庭旅馆)(Hotel Conext)地铁周边香港油尖旺九龙弥敦道240号立信大厦3楼B室4.2359.0317.0
396.0我的酒店(家庭旅馆)(I-Hotel)地铁周边香港其他九龙尖沙咀弥敦道81号喜利大厦6楼A室4.229.0529.0
397.0香港D红色阁楼宾馆(D Red Loft)地铁周边香港其他弥敦道36-44号重庆大厦16楼C4室于A座15楼A9室登记入住NaNNaN977.0
398.0香港长安宾馆(Capital Guest House)地铁周边香港油尖旺弥敦道58号美丽都大厦9字楼F3室NaNNaN448.0
399.0香港新天天酒店(Everyday Inn Hotel)其他香港油尖旺佐敦庙街230-236号韶兴大厦5字楼B座NaNNaN350.0
400.0香港水晶旅社(Crystal Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44号重庆大厦E座11楼E4室 (於E座3楼登记入住NaN3.0NaN
401.0香港加勒比海宾馆(家庭旅馆)(Caribbean Sea Guest House)地铁周边香港油尖旺弥敦道36号-44号重庆大厦C座5楼C1室NaN5.01520.0
402.0香港中 港酒店(家庭旅馆)(HK-China Hotel)地铁周边香港油尖旺碧街33-39号永华大厦1楼(油麻地地铁站A1出口直走50米)1.57.0429.0
403.0伍德斯托克旅馆(Woodstock Hostel)其他香港其他Flat A1-A6, 16/F, Block A, Chungking Mansions,...NaNNaN172.0
404.0旅客宾馆(Traveller‘s Hostel)其他香港其他九龙尖沙咀弥敦道40号重庆大厦A座16字楼A1& A2室NaNNaN269.0
405.0欧若旅馆(Euro Hostel)其他香港其他Flat 6, Block D, 17/F, Chungking Mansion,NaNNaN174.0
406.0香港Prestige旅馆(Prestige Guesthouse)其他香港其他弥敦道40号重庆大厦E座3字楼E1室NaNNaN122.0
407.0香港捷舒旅(Just Hotel)地铁周边香港油尖旺尖沙咀金巴利道27-33号永利大厦F座4楼3.8183.0888.0
408.0香港圣地牙哥宾馆(家庭旅馆)(San Diego Guesthouse)地铁周边香港油尖旺亚皆老街83号先施大厦3字楼309室NaN84.0348.0
409.0香港珠峰旅馆(Everest Inn Guest House)地铁周边香港其他香港弥敦道40号重庆大厦D座16字楼3室(尖沙咀地铁站旁)NaN7.0175.0
410.0深圳月亮月亮公寓民宿香港罗湖区深圳罗湖区渔民村NaN24.0506.0
411.0香港兰涛度假屋(Lantau Lodge)其他香港荃湾大屿山水口村47A号2楼NaNNaN1035.0
412.0香港航天星际酒店(Hotel Skystar)地铁周边香港其他尖沙咀弥敦道36-40号重庆大厦E座14楼E3室NaN3.0172.0
413.0香港HotelVenus(Hotel Venus)地铁周边香港油尖旺尖沙咀弥敦道36-40号重庆大厦C座12楼C6室NaN2.0172.0
414.0香港金泉酒店地铁周边香港其他香港旺角弥敦道607号新兴大厦1407室NaN16.0245.0
415.0香港天天宾馆(TIN TIN GUEST HOUSE)地铁周边香港油尖旺旺角弥敦道607号新兴大厦1517A3.216.0227.0
416.0香港AMR宾馆(AMR Hostel)地铁周边香港其他尖沙咀弥敦道58号美丽都大厦6字楼A12室NaNNaN977.0
417.0香港如心海景酒店暨会议中心(L‘hotel Nina et Convention Centre)海滨风光香港荃湾荃湾 杨屋道8号4.545462.0709.0
418.0香港如心海景酒店暨会议中心(L‘hotel Nina et Convention Centre)海滨风光香港荃湾荃湾 杨屋道8号4.545463.0709.0
419.0香港花盈酒店(家庭旅馆)(Bloomy Hotel)地铁周边香港油尖旺尖沙咀弥敦道87号华源大厦9字楼C2室4.0273.0256.0

421 rows × 8 columns

(8)用评分均值填充缺失值

df["评分"].fillna(np.mean(df["评分"]),inplace=True)
df
名字类型城市地区地点评分评分人数价格
NaNNaN其他NaN其他NaN4.283827NaNNaN
0.0香港嘉湖海逸酒店(Harbour Plaza Resort City)休闲度假香港元朗天水围 天恩路18号4.60000017604.0422.0
1.0香港铜锣湾皇悦酒店(Empire Hotel Hong Kong-Causeway Bay)浪漫情侣香港东区铜锣湾永兴街8号4.50000012708.0693.0
2.0香港碧荟酒店(The BEACON)商务出行香港油尖旺九龙旺角洗衣街88号4.700000328.0747.0
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.4000005014.0693.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.6000003427.0581.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.5000001938.0869.0
6.0海景嘉福洲际酒店(InterContinental Grand Stanford Hong ...海滨风光香港油尖旺尖沙咀東部麽地道70号4.7000004366.01296.0
7.0香港怡东酒店(Excelsior Hotel)海滨风光香港湾仔铜锣湾告士打道281号4.6000006961.01184.0
8.0香港富豪九龙酒店(Regal Kowloon Hotel)休闲度假香港油尖旺尖沙嘴麽地道71号4.50000011265.0692.0
9.0港岛香格里拉大酒店(Island Shangri-La)海滨风光香港中西区金钟中区法院道太古广场4.8000004182.02836.0
10.0香港广易商务宾馆(家庭旅馆)(WIDE EVER HOSTEL)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦14楼16单位4.1000001029.0218.0
11.0香港铜锣湾皇冠假日酒店(Crowne Plaza Hong Kong Causeway Bay)休闲度假香港湾仔铜锣湾礼顿道八号4.7000004446.01633.0
12.0香港都会海逸酒店(Harbour Plaza Metropolis)海滨风光香港油尖旺红磡 都会道7号4.50000014872.0562.0
13.0如心南湾海景酒店(L‘hotel Island South)休闲度假香港南区香港仔黄竹坑道55号4.4000009573.0447.0
14.0香港朗廷酒店(The Langham Hong Kong)休闲度假香港油尖旺尖沙嘴北京道8号4.70000011039.01899.0
15.0迪士尼探索家度假酒店(Disney Explorers Lodge)海滨风光香港离岛迪士尼乐园度假区4.8000004794.01662.0
16.0香港港丽酒店(Conrad Hong Kong)海滨风光香港中西区金钟 金钟道88号太古广场4.7000002392.02490.0
17.0香港美丽华酒店(The Mira Hong Kong)休闲度假香港九龙城尖沙咀弥敦道118-130号美丽华广场4.6000005882.01583.0
18.0香港悦来酒店(Panda Hotel)休闲度假香港荃湾荃湾 荃华街3号4.50000013694.0358.0
19.0香港文华东方酒店(Mandarin Oriental Hong Kong)海滨风光香港中西区中环干诺道中5号4.8000002452.03609.0
20.0香港恒丰酒店(Prudential Hotel)浪漫情侣香港油尖旺尖沙嘴 弥敦道222号4.5000008194.0692.0
21.0香港北角海逸酒店(Harbour Plaza North Point)海滨风光香港东区北角 英皇道665号(665 Kings Road, North Point, Hong K...4.4000003980.0507.0
22.0香港帝景酒店(Royal View Hotel)海滨风光香港荃湾汀九 青山公路353号4.5000003289.0418.0
23.0香港南洋酒店(South Pacific Hotel)浪漫情侣香港湾仔摩理臣山道23号4.5000007981.0445.0
24.0香港城景国际(The Cityview)浪漫情侣香港油尖旺窝打老道23号4.5000008648.0594.0
25.0香港黄金海岸酒店(Hong Kong Gold Coast Hotel)海滨风光香港屯门屯门 黄金海岸青山公路1号4.7000006326.0696.0
26.0香港峰景轩(Summit View Kowloon)交通方便香港油尖旺旺角 文福道5号4.600000152.0421.0
27.0香港粤海酒店(GDH Hotel)浪漫情侣香港油尖旺尖沙咀宝勒巷18号4.4000009066.0748.0
28.0香港荃湾丝丽酒店(Silka Tsuen Wan Hong Kong)浪漫情侣香港荃湾葵涌和宜合道119号4.4000001110.0370.0
...........................
390.0香港壹家旅馆(A INN Hostel)地铁周边香港油尖旺九龙旺角亚皆老街83号先施大厦13楼1304室(前台位于14楼)4.2838271.0333.0
391.0香港水晶旅社(Crystal Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44号重庆大厦E座11楼E4室 (於E座3楼登记入住4.2838273.0146.0
392.0香港传奇宾馆(Legend Guest House)地铁周边香港其他香港九龙尖沙咀弥敦道81号喜利大厦12字楼A&B室4.2838272.0245.0
393.0香港加拿大人旅馆(Canadian Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44重庆大厦E座7层 (於E座3楼登记入住)4.2838275.0122.0
394.0香港金沙宾馆(家庭旅馆)(Sands Hostel)地铁周边香港其他香港九龙尖沙咀弥敦道40号重庆大厦C座14楼C2室3.80000028.0988.0
395.0香港御珑馆(家庭旅馆)(Hotel Conext)地铁周边香港油尖旺九龙弥敦道240号立信大厦3楼B室4.200000359.0317.0
396.0我的酒店(家庭旅馆)(I-Hotel)地铁周边香港其他九龙尖沙咀弥敦道81号喜利大厦6楼A室4.20000029.0529.0
397.0香港D红色阁楼宾馆(D Red Loft)地铁周边香港其他弥敦道36-44号重庆大厦16楼C4室于A座15楼A9室登记入住4.283827NaN977.0
398.0香港长安宾馆(Capital Guest House)地铁周边香港油尖旺弥敦道58号美丽都大厦9字楼F3室4.283827NaN448.0
399.0香港新天天酒店(Everyday Inn Hotel)其他香港油尖旺佐敦庙街230-236号韶兴大厦5字楼B座4.283827NaN350.0
400.0香港水晶旅社(Crystal Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44号重庆大厦E座11楼E4室 (於E座3楼登记入住4.2838273.0NaN
401.0香港加勒比海宾馆(家庭旅馆)(Caribbean Sea Guest House)地铁周边香港油尖旺弥敦道36号-44号重庆大厦C座5楼C1室4.2838275.01520.0
402.0香港中 港酒店(家庭旅馆)(HK-China Hotel)地铁周边香港油尖旺碧街33-39号永华大厦1楼(油麻地地铁站A1出口直走50米)1.5000007.0429.0
403.0伍德斯托克旅馆(Woodstock Hostel)其他香港其他Flat A1-A6, 16/F, Block A, Chungking Mansions,...4.283827NaN172.0
404.0旅客宾馆(Traveller‘s Hostel)其他香港其他九龙尖沙咀弥敦道40号重庆大厦A座16字楼A1& A2室4.283827NaN269.0
405.0欧若旅馆(Euro Hostel)其他香港其他Flat 6, Block D, 17/F, Chungking Mansion,4.283827NaN174.0
406.0香港Prestige旅馆(Prestige Guesthouse)其他香港其他弥敦道40号重庆大厦E座3字楼E1室4.283827NaN122.0
407.0香港捷舒旅(Just Hotel)地铁周边香港油尖旺尖沙咀金巴利道27-33号永利大厦F座4楼3.800000183.0888.0
408.0香港圣地牙哥宾馆(家庭旅馆)(San Diego Guesthouse)地铁周边香港油尖旺亚皆老街83号先施大厦3字楼309室4.28382784.0348.0
409.0香港珠峰旅馆(Everest Inn Guest House)地铁周边香港其他香港弥敦道40号重庆大厦D座16字楼3室(尖沙咀地铁站旁)4.2838277.0175.0
410.0深圳月亮月亮公寓民宿香港罗湖区深圳罗湖区渔民村4.28382724.0506.0
411.0香港兰涛度假屋(Lantau Lodge)其他香港荃湾大屿山水口村47A号2楼4.283827NaN1035.0
412.0香港航天星际酒店(Hotel Skystar)地铁周边香港其他尖沙咀弥敦道36-40号重庆大厦E座14楼E3室4.2838273.0172.0
413.0香港HotelVenus(Hotel Venus)地铁周边香港油尖旺尖沙咀弥敦道36-40号重庆大厦C座12楼C6室4.2838272.0172.0
414.0香港金泉酒店地铁周边香港其他香港旺角弥敦道607号新兴大厦1407室4.28382716.0245.0
415.0香港天天宾馆(TIN TIN GUEST HOUSE)地铁周边香港油尖旺旺角弥敦道607号新兴大厦1517A3.20000016.0227.0
416.0香港AMR宾馆(AMR Hostel)地铁周边香港其他尖沙咀弥敦道58号美丽都大厦6字楼A12室4.283827NaN977.0
417.0香港如心海景酒店暨会议中心(L‘hotel Nina et Convention Centre)海滨风光香港荃湾荃湾 杨屋道8号4.50000045462.0709.0
418.0香港如心海景酒店暨会议中心(L‘hotel Nina et Convention Centre)海滨风光香港荃湾荃湾 杨屋道8号4.50000045463.0709.0
419.0香港花盈酒店(家庭旅馆)(Bloomy Hotel)地铁周边香港油尖旺尖沙咀弥敦道87号华源大厦9字楼C2室4.000000273.0256.0

421 rows × 8 columns

(9)删除价格和评分人数的缺失值

df=df.dropna(subset=["价格","评分人数"])#【subset定义要在哪些列中查找缺失值】,inplace表示直接在原DataFrame修改
df
名字类型城市地区地点评分评分人数价格
0.0香港嘉湖海逸酒店(Harbour Plaza Resort City)休闲度假香港元朗天水围 天恩路18号4.60000017604.0422.0
1.0香港铜锣湾皇悦酒店(Empire Hotel Hong Kong-Causeway Bay)浪漫情侣香港东区铜锣湾永兴街8号4.50000012708.0693.0
2.0香港碧荟酒店(The BEACON)商务出行香港油尖旺九龙旺角洗衣街88号4.700000328.0747.0
3.0香港湾仔帝盛酒店(Dorsett Wanchai)浪漫情侣香港湾仔皇后大道东387-397号4.4000005014.0693.0
4.0如心艾朗酒店(L‘hotel elan)浪漫情侣香港观塘观塘创业街38号4.6000003427.0581.0
5.0香港隆堡柏宁顿酒店(Hotel Pennington by Rhombus)浪漫情侣香港湾仔铜锣湾边宁顿街13-15号4.5000001938.0869.0
6.0海景嘉福洲际酒店(InterContinental Grand Stanford Hong ...海滨风光香港油尖旺尖沙咀東部麽地道70号4.7000004366.01296.0
7.0香港怡东酒店(Excelsior Hotel)海滨风光香港湾仔铜锣湾告士打道281号4.6000006961.01184.0
8.0香港富豪九龙酒店(Regal Kowloon Hotel)休闲度假香港油尖旺尖沙嘴麽地道71号4.50000011265.0692.0
9.0港岛香格里拉大酒店(Island Shangri-La)海滨风光香港中西区金钟中区法院道太古广场4.8000004182.02836.0
10.0香港广易商务宾馆(家庭旅馆)(WIDE EVER HOSTEL)地铁周边香港油尖旺九龙旺角弥敦道607号新兴大厦14楼16单位4.1000001029.0218.0
11.0香港铜锣湾皇冠假日酒店(Crowne Plaza Hong Kong Causeway Bay)休闲度假香港湾仔铜锣湾礼顿道八号4.7000004446.01633.0
12.0香港都会海逸酒店(Harbour Plaza Metropolis)海滨风光香港油尖旺红磡 都会道7号4.50000014872.0562.0
13.0如心南湾海景酒店(L‘hotel Island South)休闲度假香港南区香港仔黄竹坑道55号4.4000009573.0447.0
14.0香港朗廷酒店(The Langham Hong Kong)休闲度假香港油尖旺尖沙嘴北京道8号4.70000011039.01899.0
15.0迪士尼探索家度假酒店(Disney Explorers Lodge)海滨风光香港离岛迪士尼乐园度假区4.8000004794.01662.0
16.0香港港丽酒店(Conrad Hong Kong)海滨风光香港中西区金钟 金钟道88号太古广场4.7000002392.02490.0
17.0香港美丽华酒店(The Mira Hong Kong)休闲度假香港九龙城尖沙咀弥敦道118-130号美丽华广场4.6000005882.01583.0
18.0香港悦来酒店(Panda Hotel)休闲度假香港荃湾荃湾 荃华街3号4.50000013694.0358.0
19.0香港文华东方酒店(Mandarin Oriental Hong Kong)海滨风光香港中西区中环干诺道中5号4.8000002452.03609.0
20.0香港恒丰酒店(Prudential Hotel)浪漫情侣香港油尖旺尖沙嘴 弥敦道222号4.5000008194.0692.0
21.0香港北角海逸酒店(Harbour Plaza North Point)海滨风光香港东区北角 英皇道665号(665 Kings Road, North Point, Hong K...4.4000003980.0507.0
22.0香港帝景酒店(Royal View Hotel)海滨风光香港荃湾汀九 青山公路353号4.5000003289.0418.0
23.0香港南洋酒店(South Pacific Hotel)浪漫情侣香港湾仔摩理臣山道23号4.5000007981.0445.0
24.0香港城景国际(The Cityview)浪漫情侣香港油尖旺窝打老道23号4.5000008648.0594.0
25.0香港黄金海岸酒店(Hong Kong Gold Coast Hotel)海滨风光香港屯门屯门 黄金海岸青山公路1号4.7000006326.0696.0
26.0香港峰景轩(Summit View Kowloon)交通方便香港油尖旺旺角 文福道5号4.600000152.0421.0
27.0香港粤海酒店(GDH Hotel)浪漫情侣香港油尖旺尖沙咀宝勒巷18号4.4000009066.0748.0
28.0香港荃湾丝丽酒店(Silka Tsuen Wan Hong Kong)浪漫情侣香港荃湾葵涌和宜合道119号4.4000001110.0370.0
29.0香港悦品海景酒店(原观塘丽东酒店)(Hotel COZI Harbour view)海滨风光香港观塘九龙官塘伟业街163號4.4000001581.0484.0
...........................
377.0香港新豪华宾馆(家庭旅馆)(New Ho Wah Villa)地铁周边香港油尖旺庙街253-255号世华商业大厦4字楼3.200000147.0199.0
379.0香港恒好宾馆(Hang Ho Hostel)地铁周边香港油尖旺九龙弥敦道242号立信大厦6字楼B室4.500000142.0445.0
382.0香港乐桃宾馆(Motel Happy Peach)地铁周边香港油尖旺九龙尖沙咀加连威老道14号加连威大厦6楼B室3.600000124.0263.0
383.0香港爱港宾馆(ICON INN)地铁周边香港油尖旺九龙尖沙咀弥敦道40号重庆大厦E座11楼E3室(于A座15楼A9室登记入住)4.2838273.0202.0
384.0尊贵闲庭酒店(Premium Lounge)其他香港其他Flat A6 & A7, 16/F, Block A, Chungking Mansion...4.2838271.0166.0
385.0香港兰花轩宾馆(家庭旅馆)(ORCHID INN)地铁周边香港油尖旺九龙油麻地弥敦道383-385号平安大楼八楼(电梯按7字)10室4.2838279.0245.0
386.0恒晖宾馆 (家庭旅馆)(Hang Fai Hotel)地铁周边香港油尖旺九龙油麻地文明里15-17号丽星大厦13字楼E室3.60000057.0199.0
387.0香港东方明珠宾馆(Oriental Pearl Hostel)地铁周边香港油尖旺尖沙咀弥敦道38号重庆大厦A座三楼总台2.70000027.099.0
388.0香港摩登宾馆(MODERN HOTEL)地铁周边香港其他旺角登打士街33号登德大厦2/F A室2.90000058.0479.0
389.0香港屋企旅舍(Ukkei Inn)地铁周边香港油尖旺油麻地弥敦道495-497A号丽星大厦10B4.2838274.0438.0
390.0香港壹家旅馆(A INN Hostel)地铁周边香港油尖旺九龙旺角亚皆老街83号先施大厦13楼1304室(前台位于14楼)4.2838271.0333.0
391.0香港水晶旅社(Crystal Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44号重庆大厦E座11楼E4室 (於E座3楼登记入住4.2838273.0146.0
392.0香港传奇宾馆(Legend Guest House)地铁周边香港其他香港九龙尖沙咀弥敦道81号喜利大厦12字楼A&B室4.2838272.0245.0
393.0香港加拿大人旅馆(Canadian Hostel)地铁周边香港其他香港尖沙咀弥敦道36-44重庆大厦E座7层 (於E座3楼登记入住)4.2838275.0122.0
394.0香港金沙宾馆(家庭旅馆)(Sands Hostel)地铁周边香港其他香港九龙尖沙咀弥敦道40号重庆大厦C座14楼C2室3.80000028.0988.0
395.0香港御珑馆(家庭旅馆)(Hotel Conext)地铁周边香港油尖旺九龙弥敦道240号立信大厦3楼B室4.200000359.0317.0
396.0我的酒店(家庭旅馆)(I-Hotel)地铁周边香港其他九龙尖沙咀弥敦道81号喜利大厦6楼A室4.20000029.0529.0
401.0香港加勒比海宾馆(家庭旅馆)(Caribbean Sea Guest House)地铁周边香港油尖旺弥敦道36号-44号重庆大厦C座5楼C1室4.2838275.01520.0
402.0香港中 港酒店(家庭旅馆)(HK-China Hotel)地铁周边香港油尖旺碧街33-39号永华大厦1楼(油麻地地铁站A1出口直走50米)1.5000007.0429.0
407.0香港捷舒旅(Just Hotel)地铁周边香港油尖旺尖沙咀金巴利道27-33号永利大厦F座4楼3.800000183.0888.0
408.0香港圣地牙哥宾馆(家庭旅馆)(San Diego Guesthouse)地铁周边香港油尖旺亚皆老街83号先施大厦3字楼309室4.28382784.0348.0
409.0香港珠峰旅馆(Everest Inn Guest House)地铁周边香港其他香港弥敦道40号重庆大厦D座16字楼3室(尖沙咀地铁站旁)4.2838277.0175.0
410.0深圳月亮月亮公寓民宿香港罗湖区深圳罗湖区渔民村4.28382724.0506.0
412.0香港航天星际酒店(Hotel Skystar)地铁周边香港其他尖沙咀弥敦道36-40号重庆大厦E座14楼E3室4.2838273.0172.0
413.0香港HotelVenus(Hotel Venus)地铁周边香港油尖旺尖沙咀弥敦道36-40号重庆大厦C座12楼C6室4.2838272.0172.0
414.0香港金泉酒店地铁周边香港其他香港旺角弥敦道607号新兴大厦1407室4.28382716.0245.0
415.0香港天天宾馆(TIN TIN GUEST HOUSE)地铁周边香港油尖旺旺角弥敦道607号新兴大厦1517A3.20000016.0227.0
417.0香港如心海景酒店暨会议中心(L‘hotel Nina et Convention Centre)海滨风光香港荃湾荃湾 杨屋道8号4.50000045462.0709.0
418.0香港如心海景酒店暨会议中心(L‘hotel Nina et Convention Centre)海滨风光香港荃湾荃湾 杨屋道8号4.50000045463.0709.0
419.0香港花盈酒店(家庭旅馆)(Bloomy Hotel)地铁周边香港油尖旺尖沙咀弥敦道87号华源大厦9字楼C2室4.000000273.0256.0

397 rows × 8 columns

(10)保存到“酒店数据1.xlsx”

df.to_excel("./酒店数据1.xlsx")
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WTcrazy _

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值