笔记
文章平均质量分 86
Fly-Pluche
The man is too lazy to introduce himself.
展开
-
机器学习:期望风险、经验风险、结构风险
这里主要记录我理解期望风险、经验风险、结构风险的过程。原创 2022-10-06 19:22:19 · 1239 阅读 · 1 评论 -
超强实时跟踪系统PP-Tracking学习记录
PP-Tracting学习记录超强实时跟踪系统PP-Tracking:飞桨AI Studio - 人工智能学习实训社区 (baidu.com)目标检测多目标跟踪仅检测当前帧物体的id信息可以构建帧间的关系无法识别同一物体并去重id信息可以识别同一物体无法得到长轨迹或轨迹易断裂连续长轨迹,便于后续高阶应用技术简介Detection Based Tracking:SDE,JDESDE采用目标检测与ReID解耦的方式进行JDE采用目标检测与ReID耦原创 2022-04-23 11:01:35 · 1226 阅读 · 0 评论 -
python慢的原因
????python慢的原因前言相比C/C++/JAVA, Python确实慢,在一些特殊场景下,Python比C++慢100~200倍由于速度慢的原因,很多公司的基础架构代码依然用C/C++开发比如各大公司阿里/腾讯/快手的推荐引擎\搜索引擎、存储引擎等底层对性能要求高的模块。原因是动态类型语言,变解释变运行:C与C++运行的时候要先进行编译,编译成为可以直接生成运行效率高的机械码,可以看到每次运行都生成了.exepython执行的时候是源码,需要一个源码到机械码的过程。变量:原创 2022-02-21 22:53:17 · 3972 阅读 · 1 评论 -
现身说法之找不到Deepstream 5.0旧版本的文档,论英语的重要性
吐槽原创 2022-02-15 20:08:59 · 348 阅读 · 0 评论 -
Python命名规范
Python命名规范来自一下两篇博文的个人阅读整合笔记Python 编码规范(Google) | 菜鸟教程 (runoob.com)Python代码规范和命名规范 - DuKe渡客 - 博客园 (cnblogs.com)格式化快捷键PyCharm:ctrl+alt+LVs Code: alt+shift+F行长度每行不超过80个字符(方便查看),对于超过长度的代码,可以直接通过添加’\‘进行换行XiaoMing=Student(Money=10)XiaoMing=Stu原创 2021-12-18 21:55:13 · 304 阅读 · 0 评论 -
MQTT基础知识及python搭建使用
UDP延迟低,传输快,传输会有一定的损失。采用广播的形式,一般在局域网中使用。TCPlatency大概是UDP的两倍,传输信息损失低,端到端。MQTT通信概述MQTT(Message Queuing Telemetyr Transport消息队列遥测传输)基于发布/订阅(Publish/Subscribe)模式的轻量级通讯协议,该协议构建于TCP/IP协议之上,属于应用层协议。是一种开放式OASIS和ISO标准的轻量级发布订阅网络协议,可在设备之间传输消息,是当下使用广泛的物联网通信协议之一。原创 2021-12-17 20:05:41 · 1318 阅读 · 0 评论 -
机器学习模型调参笔记
模型调参9.1 模型调参【斯坦福21秋季:实用机器学习中文版】_哔哩哔哩_bilibiliStart with a good baseline,e.g.default settings in high-quality toolkits,values reported in papers.参考其他论文中的一些超参数turn a value,retrain the model to see the changes如果一次调整太多值,则无法确定是什么值在做贡献Repeat mult原创 2021-12-16 18:20:30 · 914 阅读 · 0 评论 -
信安数学基础:求原根指数高次同余
原根与指标指数与原根ae≡1(mod m)a^e≡1(mod\ m)ae≡1(mod m)对于上面这个式子成立的最小整数e对模m的指数,记做ordm(a)ord_{m}(a)ordm(a)。如果a对模m的指数是φ(m)φ(m)φ(m),则a叫做模m的原根(原根不唯一)。作用:原根的求解只是求解高次同余方程时计算指标,判断是否有解。定理5.2.1设p是奇素数,则模p的原根存在,且有φ(p−1)φ(p-1)φ(p−1)个原根。定理5.2.2设p为奇素数,p-1的所有原创 2021-12-15 20:29:47 · 3298 阅读 · 0 评论 -
XML读取
python XML文件读取刚好接触了XML文件的读取,了解了一个过程,先进行记录:XML 文件解析 - 知乎 (zhihu.com)python 使用ElementTree解析xml - wanlifeipeng - 博客园 (cnblogs.com)XML就是采用树状的方式进行存储数据,就是将整个文件看成一棵树进行存放数据。先上XML图:基础操作import xml.etree.ElementTree as ET# 加载xml文件tree = ET.parse('10.xml')原创 2021-12-15 20:25:26 · 557 阅读 · 0 评论 -
2021 || You Cannot Easily Catch Me: A Low-Detectable Adversarial Patch for Object Detectors
You Cannot Easily Catch Me: A Low-Detectable Adversarial Patch for Object Detectorsabstract大多数patch可以被简单的贴片检测器分类网络击败。对此,我们提出了一种低检测的对抗补丁,它用小的和纹理一致的对抗补丁攻击对象检测器,使这些对手不太可能被识别。具体地说,我们使用几个几何原语来建模补丁的形状和位置。为了提高我们的攻击性能,我们还根据损失函数为边界框分配了不同的权重。我们在公共检测数据集COCO和驱动视频数原创 2021-10-04 14:57:17 · 435 阅读 · 0 评论 -
文档格式及相关注意事项
文档格式在写文档之前,先把所有的格式制定下来,通过宏定义的方式制定不同标题的不同格式:位于开始的标题除了一级标题采用一、二、三、的形式,其他的标题全部采用1.1.1的形式,例如:二、执行思路1.1 执行过程1.1.1总体架构所有的标题都要采用左对齐加粗的方式。ps对于上面采取的这种格式只有在分点概述的时候才要用上(1)(2)序号,而采用这些序号的不叫标题,叫列表。只有摘要,关键字还有封面需要居中加粗除了标题以外的内容不需要加粗,除非你在一些指标上需要特别突出。题注要原创 2021-09-06 09:45:24 · 494 阅读 · 0 评论 -
Deepsort中匈牙利算法和卡尔曼滤波器的作用
DEEPSORT关于deepsort源码以及原理的具体讲解,在知乎,CSDN上有很多优秀的回答,在这里主要是我在看完他们的理解之后,将他们的高见串联并加上自己的理解(对Deepsort中使用匈牙利算法以及卡尔曼滤波这两个模块的使用)有些内容改自大佬们的解释,以方便对我自己的理解进行论证。下面开始进入正题。作用视频中不同时刻的同一个人,位置发生了变化,那么是如何关联上的呢?答案就是匈牙利算法和卡尔曼滤波。 匈牙利算法可以告诉我们当前帧的某个目标,是否与前一帧的某个目标相同。原创 2021-08-26 16:57:05 · 2833 阅读 · 0 评论 -
机器学习常用小代码块
这个是我常用的代码,保存下来,以供以后使用方便。有些代码可能是直接从其他地方copy过来的,但是在文中不进行标注引用。特此声明。数据NUMPY与TENSOR的转化tensor -> numpynp.array(data.cpu())或np.array(data.cpu().detch())numpy-> tensortorch.from_numpy(data)tensor用sizenumpy用shape数据类型转化得到数据类型data.dt..原创 2021-08-12 22:31:54 · 766 阅读 · 0 评论 -
注意力的理解心得
注意力机制注意力,很明显就是一个与人的视觉及神经有关的东西。我们看电脑的时候,总是全身心的投入其中,即是妹妹从旁边走过,你也不会注意,因为电脑屏幕里是更好看的jk妹妹。而注意力机制,就是模仿我们的大脑对图片的重点进行加权处理。注意力分为空间注意力与通道注意力空间注意力是获得H,W维度上的权值(输出是B×1×W×H),然后与feature map相乘。通道注意力则是获得C 维度上的权值(输出为B×C×1×1),再与feature map 相乘。常见的就是SE注意力。一个网络中通常会同时使用空间原创 2021-07-31 14:45:47 · 14299 阅读 · 44 评论 -
可变3D卷积|| Deformable 3D Convolution for Video Super-Resolution
DEFORMABLE 3D CONVOLUTION FOR VIDEO SUPER-RESOLUTION~前言~3D卷积可以比2D卷积更关注时空特征。且对于3D Net来说,在所有层使用3×3×3的小卷积核效果更好。以前的方法多是在空间域上提取特征,在时域上进行动作补偿。因此视频序列中的时空信息无法被共同利用,超分辨视频序列的相干性被削弱。由于视频帧在时间维度上提供了额外的信息,因此充分利用视频帧的时空依赖性来提高视频SR的性能是非常重要的。由于三维卷积(C3D)可以同时建模外观与运原创 2021-07-30 21:05:25 · 3479 阅读 · 8 评论 -
Transformer-XL详解
Vanilla Transformer是Transformer和Transformer-XL中间过度的一个算法提出原因为解决self.attention的n方复杂度,以及超长文本获取信息冗余问题,限制输入文本的长度,一般的Transformer在处理超长文本时,训练时segment分开,一个一个训练,预测时,segment步长为1进行移动,效率太低,故改进出了Transformer-XL为啥叫Transformer-XLXL—>尺码中的XL,大,这个Transformer机...原创 2021-06-13 17:31:14 · 1705 阅读 · 0 评论 -
2019|| 详细解读 点渲染PointRendImage Segmentation as Rendering
§摘要我们提出了一种高效、高质量的目标和场景图像分割新方法。通过类比经典的计算机图形学方法高效渲染像素标记任务中面临的过采样和欠采样挑战,我们发展了一个独特的视角,将图像分割作为一个渲染问题。从这个优势出发,我们提出了PointRend(基于点的渲染)神经网络模块:该模块基于迭代细分算法,在自适应选择的位置执行基于点的分割预测。PointRend可以通过在现有的最先进的模型之上构建,灵活地应用于实例分割和语义分割任务。虽然很多具体的实现都是可能的,但是我们展示了一个简单的设计已经获得了很好的结果。定性地说原创 2021-05-17 12:57:23 · 1370 阅读 · 1 评论 -
CVPR2021 || 深度敏感注意力Deep RGB-D Saliency Detection with Depth-Sensitive Attention
Paper:https://arxiv.org/abs/2103.11832Code:未开源动机在最近的文献中,RGB-D SOD方法通常将深度通道作为辅助输入通道,直接送入卷积神经网络(convolutional neural network, CNN)进行特征提取[7,21,31,43,59]。因此,它们不能很好地利用深度先验知识来捕获显著物体的相应几何布局。由于突出的目标往往分布在几个特定的深度区间内,因此可以通过有规律地滑动深度区间窗口来粗略地检测到。受此启发,我们认为可以提取RGB特征w原创 2021-05-04 14:35:26 · 2066 阅读 · 0 评论 -
数据增强方法小汇总
数据增强的作用/为啥要进行数据增强避免过拟合。当数据集具有某种明显的特征,例如数据集中图片基本在同一个场景中拍 摄,使用 Cutout 方法和风格迁移变化等相关方法可避免模型学到跟目标无关的信息。提升模型鲁棒性,降低模型对图像的敏感度。当训练数据都属于比较理想的状态,碰到 一些特殊情况,如遮挡,亮度,模糊等情况容易识别错误,对训练数据加上噪声,掩码等方 法可提升模型鲁棒性。增加训练数据,提高模型泛化能力。避免样本不均衡。在工业缺陷检测方面,医疗疾病识别方面,容易出现正负样本极度不 平衡的情况,通过原创 2021-04-22 13:36:51 · 5268 阅读 · 0 评论 -
神经网络综合知识小杂烩汇总
ReLU提出的原因:sigmoid容易出现梯度消失。梯度消失:在某些神经网络中,从后向前看,前面层梯度越来越小,后面的层比前面的层学习速率高。原因:sigmoid函数导数图像:因为最大的导数为0.25<1在计算导数的时候我们又用上了链式法则,多个小于1的数据相乘,算出来的结果可想而知——>导数小。而且传统的sigmoid算法,计算量大,求梯度误差的时候求导涉及除法。优点1.很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题2. x>0 时,梯度恒为1,原创 2021-04-22 11:30:47 · 1572 阅读 · 0 评论 -
CVPR2021|| Coordinate Attention注意力机制
Paper:https://arxiv.org/pdf/2103.02907.pdfGitHub:https://github.com/Andrew-Qibin/CoordAttention轻量,优秀,好用!讲之前我们先回顾一下以前的SE与CBAMSESE比较简单,看一下结构图差不多就能理解了,如果有些实现不太懂的,可以借鉴一下CBAM的。但SE只考虑内部通道信息而忽略了位置信息的重要性,而视觉中目标的空间结构是很重要的。CBAM稍微介绍一下CBAM,如图b所示,CBAM包含空间注意力和通原创 2021-04-18 16:04:08 · 30132 阅读 · 76 评论 -
2020 ||门控通道注意力机制Gated Channel Transformation
Gated Channel Transformation for Visual Recognition论文链接: https://arxiv.org/abs/1909.11519代码地址: https://github.com/z-x-yang/GCTCSDN(这个是详细的解说):https://blog.csdn.net/weixin_47196664/article/details/108414207?ops_request_misc=&request_id=&biz_id=102原创 2021-04-16 12:35:56 · 14227 阅读 · 14 评论 -
各种loss 显著性图像检测
Loss=L边缘+L全局通过canny得出预测图像与mask图像的边缘,然后计算损失。bce_loss = nn.BCELoss(size_average=True)def opencv(images): for i in range(images.shape[0]): image = images[i, 0, :, :] image = image // 0.5000001 * 255 # 二值化 image_2 = image.cpu原创 2021-04-15 21:09:37 · 2314 阅读 · 4 评论 -
连接工作站跑机器学习(Linux命令)
首先讲一讲可能用到的操作1.查看当前文件夹下的文件dir2.返回上一/两个目录cd …cd …/…3.Tab直接按Tab,可以查看当前文件下的所有东西4.移动文件mv 文件名 移动目的地文件名5.重命名文件mv 文件名 修改后的文件名6.上传文件scp D:/1.jpg(本地文件路径) swy@10.0.0.3:/home/jes记住不能留空格。。。7.下载工作站的东西到本地scp ssh swy@10.0.0.3:pth1(要下载的文件的路径) pth2(自己本地的路原创 2021-04-15 20:49:22 · 1353 阅读 · 0 评论 -
神经网络模型(.pth)能做些什么(使用心得)
一.概念模型=网络结构+网络参数网络结构:VGG ,RASNet……网络参数:网络结构中kernel,weight之类的数据二.怎么得到模型1.下载别人的网络结构我们有时候会借鉴别人的网络,大多数情况下他们会在GitHub中放上已经训练好的模型,这个时候,你就可以下载下来直接用。ps:大多都在README的文件中会放一个云盘的链接,点链接下载。2.保存自己的网络模型if ite_num % save_frq == 0: print(model_dir + model_name+"_bc原创 2021-04-12 21:29:04 · 18515 阅读 · 14 评论 -
用Colab训练机器学习的经验以及踩坑的那些事
首先因为colab是谷歌旗下的云计算,所以如果没有梯子的小伙伴在点完赞后就可以退出去了(不会吧,不会吧,这年头还有人没有梯子/doge)colab的直达车https://colab.research.google.com/notebooks/intro.ipynb这里先讲用colab:一.谷歌云盘在谷歌云盘上上传你的训练集和代码。二.打开colab你可以点击左上角的新建或者直接右键空白处。然后我们就可以得到一个空白的colab三.登录from google.colab import d原创 2021-04-11 21:26:26 · 18278 阅读 · 22 评论 -
为什么要学好数学,计算机与数学的关系,学习数学的过程
学计算机为什么要学好数学,数学可以为我们提供什么样的思想与工具,数学又在那些方面潜移默化的影响我们的日常?数学是抽象的,但也正因为所研究出的抽象关系可以指代任何具体事物,要先弄清关系所指的任务、输入和输出后,才可体会真正含义……1.矩阵乘法的本质:讲的很透彻的一篇知乎回答https://www.zhihu.com/question/213519652.线性代数的本质:3Blue1Brown官方双语:https://www.bilibili.com/video/av6731067/?p=1原创 2021-04-04 16:41:57 · 554 阅读 · 0 评论 -
2017|| 模型压缩 Slimming-pytorch 剪枝
Slimming-pytorch(剪枝)Code :https://github.com/mengrang/Slimming-pytorchPaper : https://arxiv.org/abs/1708.065191.动机:随着网络的深度以及广度的加大,神经网络的模型也越来越大,为了在训练过程中引入的开销最小,生成的模型不需要特殊的软件/硬件加速器。我们将该方法称为网络瘦身,本文的剪枝就是为了得到一个相对紧凑而小的网络。2.主要实现过程:在Bn层引入放缩因子,把放缩因子与卷积层中的每个原创 2021-03-01 21:55:17 · 1141 阅读 · 0 评论 -
2020 模型压缩_滤波器嫁接技术
滤波器嫁接技术:Code: https://github.com/fxmeng/filter-graftingPaper:https://arxiv.org/pdf/2001.05868.pdf本文贡献:提出了一种新的学习范式,称为滤波器嫁接。嫁接可以在不改变网络结构的情况下,重新激活无效的过滤器,提高神经网络的潜力。提出了一种基于熵的准则和自适应加权策略,进一步提高了滤波器嫁接方法的性能。1.滤波器嫁接动机构建滤波器嫁接技术的动机是通常在训练完的网络中存在一些无效的滤波器,很多网络模型剪枝的原创 2021-02-28 12:47:19 · 275 阅读 · 1 评论 -
入坑机器学习
入坑——机器学习 CaiXiang 软件部一级保护动物 这真是一个艰难迷茫的过程。。。。。 相信查过一点相关资料的小伙伴,肯定知道,新人小白入坑机器学习,就是要装包,numpy , pandas等等,那我们先从装包开始入坑吧。 以装numpy为例子吧! 首先,打开cmd命令,输入conda env list然后就可查看有哪些虚拟环境,用conda activate xxx(虚拟环境的名字)来进入你所想要进入的虚拟环境: 这里的星号原创 2020-11-16 16:04:04 · 279 阅读 · 0 评论 -
深度学习使用服务器Linux常用命令
Github学习记录:蔡响 软件部 机器学习一、(基操)ls 或者 dir 查看文件内容ls xxx(路径) 查看这段路径的文件dir -h 显示隐藏文件夹2.cd c: 转文件(按Tab键补全文件名字)cd 转文件路径,如果打开一个gif啥的好像不用cd, 直接输入相关的文件名。3.git init 初始化文件4.cls 清空所有的操作。5.cd …返回上一个6.mkdir xxx 创建文件7.del xxx 删除文件8.git status 查看状态原创 2020-11-08 20:49:15 · 887 阅读 · 4 评论