二—13:Map源码分析

一、哈希表

1.引入哈希表

在无序数组中按照内容查找,效率低下,时间复杂度是O(n)。

 在有序数组中按照内容查找,可以使用折半查找,时间复杂度O(log_{2}n

问题:按照内容查找,能否也不进行比较,而是通过计算得到地址,实现类似数组按照索引查询的高效率呢O(1).?

可以用哈希表来实现。

2.哈希表的结构和特点

hash表 也叫散列表;特点:快  

2.1 哈希表添加数据

  1. 计算哈希码(调用hashCode(),结果是一个int值,整数的哈希码取自身即可)

  2. 计算在哈希表中的存储位置 y=k(x)=x%11

    x:哈希码    k(x): 函数     y:在哈希表中的存储位置

  3. 存入哈希表

    情况1:一次添加成功

    情况2:多次添加才成功(出现了冲突,调用equals()和对应链表的元素进行比较,比较到最后,结果都是false,创建新节点,存储数据,并加入链表末尾)

    情况3:不添加(出现了冲突,调用equals()和对应链表的元素进行比较, 经过一次或者多次比较后,结果是true,表明重复,不添加)

结论1:哈希表添加数据快(3步即可,不考虑冲突)

结论2:唯一、无序.

3. 哈希表相关操作

3.1 如何查询数据

和添加数据的过程是相同的。

情况1:一次找到 23

情况2:多次找到 67

结论:哈希表查询数据快。

3.2 hashCode和equals有什么作用 

hashCode(): 计算哈希码,是一个整数,根据哈希码可以计算出数据在哈希表中的存储位置。 

equals():添加时出现了冲突,需要通过equals进行比较,判断是否相同;查询时也需要使用equals进行比较,判断是否相同。

3.3 各种类型数据的哈希码应该如何获取 hashCode()

hash是什么?
hash是一种函数,一般翻译为散列,是把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是hashcode(散列值/哈希码);
这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值;
简单地说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。


如何获取 hashCode()?

通过对象的内部地址(也就是物理地址)转换成一个整数,然后该整数通过hash函数的算法就得到了hashcode(不同jvm的实现不同, hotspot的实现贴在了最后),所以,hashcode是什么呢?就是在hash表中对应的位置。这里如果还不是很清楚的话,举个例子,hash表中有 hashcode为1、hashcode为2、(...)3、4、5、6、7、8这样八个位置,有一个对象A,A的物理地址转换为一个整数17(这是假如),就通过直接取余算法,17%8=1,那么A的hashcode就为1,且A就在hash表中1的位置。
 

Integer中源码

public static int hashCode(int value) {
    return value;
}

Arrays中源码

  1. 如果对象为null,hash码为0.

  2. 使用31作为hash因子,减少hash碰撞。

public static int hashCode(Object a[]) {
  if (a == null)
    return 0;

  int result = 1;

  for (Object element : a)
    result = 31 * result + (element == null ? 0 : element.hashCode());

  return result;
}

String中源码

给定一个内容,对内容进行hash计算,得到一个hash值。只要内容不变,得到的结果一定是不变的。但是不能通过得到的值反向得到原内容。所以hash算法是单向不可逆的算法。 

可能出现问题:原内容不一样,经过hash计算后得到的结果一样的,这种情况称为hash碰撞。

 String类型中的hashcode()方法。算法中数字31称为hash因子。定义hash因子时尽量选择一个靠近2的n次方的一个质数。可以在一定程度上减少hash碰撞。最后选择了一个不大,不小的hash因子31.

public static int hashCode(byte[] value) {
  int h = 0;
  for (byte v : value) {
    h = 31 * h + (v & 0xff);
  }
  return h;
}

4. 解决哈希碰撞的方法

4.1 开放定址法

当发生冲突时,通过一定的规则找到下一个可用的位置,并将键值对存储在该位置上。开放地址法的具体实现方式有限性探测,二次探测和双重散列等。

4.1.1 线性探测

线性探测是一种简单的开放地址实现方式。当冲突时,线性探测会依次向后寻找下一个位置,直到找到一个空闲位置为止。这种方法的优点是实现简单,缺点是容易产生聚集现象,即连续的位置上存储了大量的键值对。

4.1.2 二次探测

二次探测是一种改进的开放地址法实现方法。当发生冲突时,二次探测会使用相关函数来计算下一个位置,以减少聚集现象的发生。

4.1.3 双重散列

双重散列是一种更加高效的开放地址法的视线方式。它使用两个不同的hash函数来计算下一个位置,以减少冲突的概率。

4.2 再哈希法

再哈洗法是一种比较简单解决哈希冲突的方法,通过多次哈希函数计算,直到找到一个空闲位置为止。

4.3 链地址法(hashmap就是这样处理的)

Hash表的每个单元作为链表的头节点。当发生冲突时放入到同一个hash值对应的链表中。

链地址法实现简单,不会产生聚集现象,单链表过程时,会导致查找效率降低。为了解决这个问题,可以采用红黑树代替链表,以提高查找效率。

4.4 建立溢出区

将hash表分为基础表和溢出表两部分,凡是和基本表发生冲突的key存储到溢出表中,公共的溢出区使用链表解决冲突。

5. 装填因子/加载因子/负载因子

哈希表的长度和表中的记录数的比例--装填因子:

如果Hash表的空间远远大于最后实际存储的记录个数,则造成了很大的空间浪费, 如果选取小了的话,则容易造成冲突。 在实际情况中,一般需要根据最终记录存储个数和关键字的分布特点来确定Hash表的大小。还有一种情况时可能事先不知道最终需要存储的记录个数,则需要动态维护Hash表的容量,此时可能需要重新计算Hash地址。

如果装填因子越小,表明表中还有很多的空单元,则添加发生冲突的可能性越小;而装填因子越大,则发生冲突的可能性就越大,在查找时所耗费的时间就越多。

二、HashMap 底层源码分析(JDK1.7及以前)

(特别常见面试题)

1. 结构简介

JDK1.7及其之前,HashMap底层是一个数组+链表实现的哈希表存储结构, 使用头插。

 链表的每个节点就是一个Entry,其中包括:键key、值value、键的哈希码hash、执行下一个节点的引用next四部分。

static class Entry<K, V> implements Map.Entry<K, V> {
    final K key; //key
    V value;//value
    Entry<K, V> next; //指向下一个节点的指针
    int hash;//哈希码
}

2. 内部成员变量含义

JDK1.7中HashMap的主要成员变量及其含义:

public class HashMap<K, V> implements Map<K, V> {
//哈希表主数组的默认长度
    static final int DEFAULT_INITIAL_CAPACITY = 16; 
//默认的装填因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f; 
//主数组的引用!!!!
    transient Entry<K, V>[] table; 
    int threshold;//界限值  阈值
    final float loadFactor;//装填因子
    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }
}

3. put()方法

调用put方法添加键值对。哈希表三步添加数据原理的具体实现;是计算key的哈希码,和value无关。特别注意:

  1. 第一步计算哈希码时,不仅调用了key的hashCode(),还进行了更复杂处理,目的是尽量保证不同的key尽量得到不同的哈希码

  2. 第二步根据哈希码计算存储位置时,使用了位运算提高效率。同时也要求主数组长度必须是2的幂

  3. 第三步添加Entry时添加到链表的第一个位置,而不是链表末尾

  4. 第四步添加Entry是发现了相同的key已经存在,就使用新的value替代旧的value,并且返回旧的value

public class HashMap {
    public V put(K key, V value) {
       //如果key是null,特殊处理
        if (key == null) return putForNullKey(value);
        //1.计算key的哈希码hash 
        int hash = hash(key);
        //2.将哈希码代入函数,计算出存储位置  y= x%16;
        int i = indexFor(hash, table.length);
        //如果已经存在链表,判断是否存在该key,需要用到equals()
        
        
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            //如找到了,使用新value覆盖旧的value,返回旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { 
                    V oldValue = e.value;// the United States
                    e.value = value;//America
                    e.recordAccess(this);
                    return oldValue;
                }
            }
            //添加一个结点
            addEntry(hash, key, value, i);
            return null;
        }
final int hash(Object k) {
    int h = 0;
    h ^= k.hashCode();
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}
  static int indexFor(int h, int length) {
       //HashMap 中是通过 hash 和数组长度减一得到的结果进行一次&运算,
//这里我们要先清楚&运算的概念:将两个二进制数进行按位&操作时,只有两个数对应的位上都为 1,结果为 1,否则都为 0
        return h & (length-1);
    }
}

4. addEntry()方法

添加元素时如达到了阈值,需扩容,每次扩容为原来主数组容量的2倍。

代码:

void addEntry(int hash, K key, V value, int bucketIndex) {
    //如果达到了门槛值,就扩容,容量为原来容量的2倍 16---32
    if ((size >= threshold) && (null != table[bucketIndex])) {
        resize(2 * table.length);
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = indexFor(hash, table.length);
    }
    //添加节点
    createEntry(hash, key, value, bucketIndex);
}

 

5. get()方法

调用get方法根据key获取value。

哈希表三步查询数据原理的具体实现。

其实是根据key找Entry,再从Entry中获取value即可。

public V get(Object key) {
    //根据key找到Entry(Entry中有key和value)
    Entry<K,V> entry = getEntry(key);
    //如果entry== null,返回null,否则返回value
    return null == entry ? null : entry.getValue();
}

三、HashMap 底层源码分析(JDK1.8及以后)

(特别常见面试题)

在JDK1.8中有一些变化,当链表的存储数据个数大于等于8,而且数组长度大于等于64时候,不再采用链表存储,而采用红黑树存储结构。这么做主要是查询的时间复杂度上,链表为O(n),而红黑树一直是O(logn)。

1. 基本属性

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
  //序列化和反序列化时使用相同的id
  private static final long serialVersionUID = 362498820763181265L;
  //初始化容量
  static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
  //最大容量
  static final int MAXIMUM_CAPACITY = 1 << 30;
  //默认负载因子
  static final float DEFAULT_LOAD_FACTOR = 0.75f;
  //树形阈值:链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
  static final int TREEIFY_THRESHOLD = 8;
  //取消阈值: 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
  static final int UNTREEIFY_THRESHOLD = 6;
  //最小树形容量:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
  static final int MIN_TREEIFY_CAPACITY = 64;
  //节点数组
  transient Node<K,V>[] table;
  //存储键值对的个数
  transient int size;
  //散列表被修改的次数(添加 | 删除)
  transient int modCount; 
  //扩容临界值
  int threshold;
  //负载因子
  final float loadFactor;
}

2. 构造方法

//和1.7区别不大
//无参构造器,加载因子默认为0.75
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
}
//指定容量大小的构造器,但调用了双参的构造器,加载因子0.75
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//全参构造器
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    //HashMap 的最大容量只能是 MAXIMUM_CAPACITY,哪怕传入的数值大于最大容量,也按照最大容量赋值
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    //加载因子必须大于0
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    //设置扩容阈值和1.7类似,目前该阈值不是正真的阈值
    this.threshold = tableSizeFor(initialCapacity);
}
//将传入的子Map中的全部元素逐个添加到HashMap中
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

3.Node 结点

前 1.7 是 Entry 结点,1.8 则是 Node 结点,其实相差不大,因为都是实现了 Map.Entry (Map 接口中的 Entry 接口)接口,即,实现了 getKey() , getValue() , equals(Object o )和 hashCode() 等方法;

static class Node<K,V> implements Map.Entry<K,V> {
    //hash 值
    final int hash;
    //键
    final K key;
    //值
    V value;
    //后继,链表下一个结点
    Node<K,V> next;
    //全参构造器
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    //返回与此项对应的键
    public final K getKey()        { return key; }
    //返回与此项对应的值
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    //hash 值
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    //判断2个Entry是否相等,必须key和value都相等,才返回true  
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

4. 添加键值对

4.1 put()方法

//添加键值对
public V put(K key, V value) {
  /*
   *参数一: 调用hash()方法
   *参数二: 键
   *参数三: 值
   **/
  return putVal(hash(key), key, value, false, true);
}

4.2 putval()方法

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
    //申明tab 和 p 用于操作原数组和结点
    Node<K,V>[] tab; Node<K,V> p;
    int n, i;
    //如果原数组是空或者原数组的长度等于0,那么通过resize()方法进行创建初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        //获取到创建后数组的长度n
        n = (tab = resize()).length;

    //通过key的hash值和 数组长度-1 计算出存储元素结点的数组中位置(和1.7一样)
    //并且,如果该位置为空时,则直接创建元素结点赋值给该位置,后继元素结点为null
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        //否则,说明该位置存在元素
        Node<K,V> e; K k;
        //判断table[i]的元素的key是否与添加的key相同,若相同则直接用新value覆盖旧value
        if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
            //判断是否是红黑树的结点,如果是,那么就直接在树中添加或者更新键值对
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //否则,就是链表,则在链表中添加或替换
        else {
            //遍历table[i],并判断添加的key是否已经存在,和之前判断一样,hash和equals
            //遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
            for (int binCount = 0; ; ++binCount) {
                //如果遍历的下一个结点为空,那么直接插入
                //该方法是尾插法(与1.7不同)
                //将p的next赋值给e进行以下判断
                if ((e = p.next) == null) {
                    //直接创建新结点连接在上一个结点的后继上
                    p.next = newNode(hash, key, value, null);
				//如果插入结点后,链表的结点数大于等7(8-1,即大于8)时,则进行红黑树的转换
				//注意:不仅仅是链表大于8,并且会在treeifyBin方法中判断数组是否为空或数组长度是否小于64
				//如果小于64则进行扩容,并且不是直接转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    //完成后直接退出循环
                    break;
                }
                //不退出循环时,则判断两个元素的key是否相同
                //若相同,则直接退出循环,进行下面替换的操作
                if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                //否则,让p指向下一个元素结点
                p = e;
            }
        }
        //接着上面的第二个break,如果e不为空,直接用新value覆盖旧value并且返回旧value
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    //添加成功后,判断实际存在的键值对数量size是否大于扩容阈值threshold(第一次时为12)
    if (++size > threshold)
        //若大于,扩容
        resize();
    //添加成功时会调用的方法(默认实现为空)
    afterNodeInsertion(evict);
    return null;
}

4.3 hash()方法(计算hash值)

static final int hash(Object key) {
  int h;
  //hashCode和h移位右移16位进行按位异或运算
  return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

4.4 resize()方法(扩容)

//该函数有两种使用情况:初始化哈希表或前数组容量过小,需要扩容
final Node<K,V>[] resize() {
    //获取原数组
    Node<K,V>[] oldTab = table;
    //获取到原数组的容量oldCap
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //获取原扩容阈值
    int oldThr = threshold;
    //新的容量和阈值目前都为0
    int newCap, newThr = 0;
    if (oldCap > 0) {
        //如果原数组容量大于等于最大容量,那么不再扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //而没有超过最大容量,那么扩容为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            //扩容为原2倍
            newThr = oldThr << 1; // double threshold
    }
    //经过上面的if,那么这步为初始化容量(使用有参构造器的初始化)
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        //否则,使用的无参构造器
        //那么,容量为16,阈值为12(0.75*16)
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //计算新的resize的上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    //使用新的容量创建一个新的数组
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    //将新的数组引用赋值给table
    table = newTab;
    //如果原数组不为空,那么就进行元素的移动
    if (oldTab != null) {
        //遍历原数组中的每个位置的元素
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                //如果该位置元素不为空,那么上一步获取元素接着置为空
                oldTab[j] = null;
                //判断该元素上是否有链表
                if (e.next == null)
                  //如果无链表,确定元素存放位置,
                 //扩容前的元素位置为 (oldCap - 1) & e.hash ,所以这里的新的位置只有两种可能:
                 //1.位置不变,
                 //2.变为 原来的位置+oldCap,下面会详细介绍
                    newTab[e.hash & (newCap - 1)] = e;
                //判断是否是树结点,如果是则执行树的操作
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    //否则,说明该元素上存在链表,那么进行元素的移动
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
             //通过loHead和hiHead来保存链表的头结点,
            // 然后将两个头结点放到newTab[j]与newTab[j+oldCap]上面去
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

 四、一些问题

1、问题一

存储在Node中的hash值, 是否就是key的hashCode()?

static final int hash(Object key) {
  int h;
  //hashCode和右移16进行按位异或运算
  return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

答案:不是。存储的是对Key先做hashCode()计算, 然后再无符号右位移16, 再按位异或

2、问题二

如何知道一个节点到底存储在Hash表(散列表)的哪个位置?

答案:根据key计算相关的hash值(并不是简单的hashCode()), (数组长度-1) & hash进行计算得出具体的下标, 如果下标只有这一个节点, 直接返回, 非一个节点, 继续在链表或者红黑树中查找。

3、问题三

什么时候需要把链表转为红黑树?

答案:链表的节点数大于8(从0开始的, 多以判断条件为 >=7), 而且数组的长度必须大于等于64,这个时候就会转成红黑树 要么就会数组的扩容。  

4、问题四

什么时候扩容?

情况一:

HashMap的Size达到Hash中(数组长度*loadFactor(扩容因子) 时扩容。即比threshold大, 进行扩容。每次扩容为原数组长度的一倍(<< 1)

情况二:

Hash表中某个链表长度到达8,且Hash表中数组的长度小于64.

5、问题五

Hash表中数组最大长度为多少?

答案:最大长度为 1<<30. 即:2的30次方法。

计算操作时,发现Hash表中数组长度为2的倍数效率最高,需要一直保持长度为2的倍数。数组长度最大取值为2的31次方减一。所以里面最大的2的倍数为2的30次方。

6、问题六

1.Hash表中使用的是单向链表还是双向链表?

答案:单项链表

2. 数组扩容时, 链表使用的是尾加还是头加?

答案:JDK1.8尾插法 。JDK1.7及以前采用的是头插法

7、问题七

链表转为红黑树时,数组中是所有的链表都转为红黑树,还是什么情况?

答案:只有数组里某个下标中的节点个数>8, 并且数组长度>=64, 该下标中的链表转换为红黑树。

8、问题八

为什么java8中长度超过8以后将链表变为红黑树?

答案:红黑树的查询效率高于链表

9、问题九

为什么选择8作为转换值?

答案:元素个数为8的红黑树中,高度为:4,最多查找4次就能找到需要的的值,长度为8的链表,最多找7次。

例如长度为4就转换。红黑树高度为3,最多找3次。链表最多3次。

例如长度为7就转换。红黑树高度3,最多找3次。链表最多6次。多找3次和转换的性能消耗比较不值得。

还有选择6和8,中间有个差值7可以有效防止链表和树频繁转换。

在源码上可以看出,在理想状态下,受随机分布的 hashCode 影响,链表中的节点遵循泊松分布,而且根据统计,链表中节点数是 8 的概率已经接近千分之一,而且此时链表的性能已经很差了,所以在这种比较罕见和极端的情况下,才会把链表转变为红黑树。

假设一下,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低。

10、总结HashMap底层原理(特别常见面试问题)

  1. 从Java8开始HashMap底层由数组+链表+红黑树。
  2. 使用HashMap时,当使用无参构造方法实例化时,设置扩容因子为默认扩容因子0.75。
  3. 当向HashMap添加内容时,会对Key做Hash计算,把得到的Hash值和数组长度-1按位与,计算出存储的位置。
  4. 如果数组中该下标没有内容, 直接存入数组中(Node节点对象), 该下标中有Node对象了, 把内容添加到对应的链表或红黑树中。
  5. 如果添加后链表长度大于等于8,会判断数组的长度是否大于等于64,如果小于64对数组扩容,扩容长度为原长度的2倍,扩容后把原Hash表内容重新放入到新的Hash表中。如果Hash长度大于等于64会把链表转换红黑树。
  6. 最终判断HashMap中元素个数是否已经达到扩容值(threshold),如果达到扩容值,需要进行扩容,扩容一倍。反之,如果删除元素后,红黑树的元素个数小于等于6,由红黑树转换为链表。

五、TreeMap底层原理

1. 介绍

TreeMap是数据结构中红黑树的具体实现。

2. 基本属性

public class TreeMap<K,V>
    extends AbstractMap<K,V>
    implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{
  //比较器,是自然排序,还是定制排序 ,使用final修饰,表明一旦赋值便不允许改变
  private final Comparator<? super K> comparator;
  //红黑树的根节点
  private transient Entry<K,V> root;
  //TreeMap中存放的键值对的数量
  private transient int size = 0;
  //修改的次数
  private transient int modCount = 0;
}

3. 节点

static final class Entry<K,V> implements Map.Entry<K,V> {
  K key; //键
  V value; //值
  Entry<K, V> left = null; //左孩子节点
  Entry<K, V> right = null;//右孩子节点
  Entry<K, V> parent; //父节点
  boolean color = BLACK; //节点的颜色,在红黑树中,只有两种颜色,红色和黑色
  //省略 有参构造 无参构造 equals()和hashCode() getter和setter
}

4. 构造方法

//构造方法,comparator比较器
public TreeMap() {
  comparator = null;
}
//构造方法,提供比较器,用指定比较器排序
public TreeMap(Comparator<? super K> comparator) {
  this.comparator = comparator;
}

5. 添加键值

5.1 put()方法

public V put(K key, V value) {
  //红黑树的根节点
  Entry<K,V> t = root; 
  //红黑树是否为空
  if (t == null) {
    //检查比较器
    compare(key, key); // type (and possibly null) check
		//创建根节点,因为根节点没有父节点,传入null值。 
    root = new Entry<>(key, value, null);
    //size值=1
    size = 1;
    //改变修改的次数
    modCount++;
    //返回null 
    return null;
  }
  int cmp;
  //声明节点
  Entry<K,V> parent;
  // split comparator and comparable paths
  //获取比较器
  Comparator<? super K> cpr = comparator;
  //如果定义了比较器,采用自定义比较器进行比较
  if (cpr != null) {
    do {
      //将红黑树根节点赋值给parent
      parent = t;
      //添加的key与根节点的值比较大小
      cmp = cpr.compare(key, t.key);
      //如果key < t.key , 指向左子树
      if (cmp < 0)
        t = t.left;
      //如果key > t.key , 指向右子树
      else if (cmp > 0)
        t = t.right;
      //如果它们相等
      else
        //新值替换旧值
        return t.setValue(value);
    } while (t != null);
  }
  //自然排序方式,没有指定比较器
  else {
    //key不能为null
    if (key == null)
      throw new NullPointerException();
    @SuppressWarnings("unchecked")
    //类型转换
    Comparable<? super K> k = (Comparable<? super K>) key;
    do {
      parent = t;
      //添加的key与根节点的值比较大小
      cmp = k.compareTo(t.key);
      // key < t.key
      if (cmp < 0)
        t = t.left;//左孩子
      // key > t.key 
      else if (cmp > 0)
        t = t.right;//右孩子
      else//如果它们相等
        //新值替换旧值
        return t.setValue(value);
    } while (t != null);
  }
  //创建新节点,并指定父节点
  Entry<K,V> e = new Entry<>(key, value, parent);
  //根据比较结果,决定新节点作为父节点的左孩子或右孩子
  if (cmp < 0)
    parent.left = e;
  else
    parent.right = e;
  //新插入节点后重新调整红黑树 
  fixAfterInsertion(e);
  size++;
  modCount++;
  return null;
}

5.2 Comparator默认比较器

//比较方法,如果comparator==null ,采用comparable.compartTo进行比较(执行添加key的类型重写之后的比较方法),否则采用指定比较器比较大小
final int compare(Object k1, Object k2) {
  return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
    : comparator.compare((K)k1, (K)k2);
}

5.3 fixAfterInsertion()方法

红黑树在新增节点过程中比较复杂,复杂归复杂它同样必须要依据上面提到的五点规范

[1]每个节点都只能是红色或者黑色。

[2]根节点是黑色。

[3]每个叶节点(NIL节点,NULL空节点)是黑色的。

[4]每个红色节点的两个子节点都是黑色 (从每个叶子到根的路径上不会有两个连续的红色节点) 。

[5]从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

由于规则1、2、3基本都会满足,下面我们主要讨论规则4、5。

假设我们这里有一棵最简单的树,我们规定新增的节点为N、它的父节点为P、P的兄弟节点为U、P的父节点为G。

对于新节点的插入有如下三个关键地方:

1、插入新节点总是红色节点。

2、如果插入节点的父节点是黑色,能维持性质 。

3、如果插入节点的父节点是红色,破坏了性质。

故插入算法就是通过重新着色或旋转,来维持性质,可能出现的情况如下:

【情况一】为根节点

若新插入的节点N没有父节点,则直接当做根据节点插入即可,同时将颜色设置为黑色。

【情况二】父结点为黑色

那么插入的红色节点将不会影响红黑树的平衡,直接插入即可。

【情况三】父节点和叔节点都为红色

当叔父结点为红色时,无需进行旋转操作,只要将父和叔结点变为黑色,将祖父结点变为红色即可

但是经过上面的处理,可能G节点的父节点也是红色,这个时候我们需要将G节点当做新增节点递归处理。

【情况四】父红,叔黑,并且新增节点和父节点都为左子树

对于这种情况先已P节点为中心进行右旋转,在旋转后产生的树中,节点P是节点N、G的父节点。

但是这棵树并不规范,所以我们将P、G节点的颜色进行交换,使之其满足规范。(这个位置的U可能不存在,因为NULL节点也是黑色)。

【情况五】父红,叔黑,并且新增节点和父节点都为右子树

对于这种情况先已P节点为中心进行左旋转,在旋转后产生的树中,节点P是节点G、N的父节点。但是这棵树并不规范,所以我们将P、G节点的颜色进行交换,使之其满足规范。

【情况六】父红,叔黑,并且新增节点为左子树,父节点为右子树

对于这种情况先以N节点为中心进行右旋转,在旋转后产生的树中,节点N是节点P、X的父节点。然后再以N节点为中心进行左旋转,在旋转后产生的树中,节点N是节点P、G的父节点。但是这棵树并不规范,所以我们将N、G节点的颜色进行交换,使之其满足规范。

【情况七】父红,叔黑,并且新增节点为右子树,父节点为左子树

对于这种情况先以N节点为中心进行左旋转,在旋转后产生的树中,节点N是节点P、Y的父节点。然后再以N节点为中心进行右旋转,在旋转后产生的树中,节点N是节点P、G的父节点。但是这棵树并不规范,所以我们将N、G节点的颜色进行交换,使之其满足规范。

代码:

  private void fixAfterInsertion(Entry<K, V> entry) {
        // 循环直到entry不是根节点,并且entry的父节点是红色
        while (null != entry && entry != root && colorOf(entry.parent) == RED) {
            // 当entry的父节点属于左侧节点时
            if (parentOf(entry) == leftOf(parentOf(parentOf(entry)))) {
                // 获取entry的右侧叔叔节点
                Entry<K, V> uncle = rightOf(parentOf(parentOf(entry)));
                // 当叔叔节点为红色时(父红&叔红)
                if (colorOf(uncle) == RED) { // 【情况三】
                    // 将父节点设置为黑色
                    setColor(parentOf(entry), BLACK);
                    // 将叔节点设置为黑色
                    setColor(uncle, BLACK);
                    // 将父节点的父节点设置为红色
                    setColor(parentOf(uncle), RED);
                    // 更新entry,通过循环继续遍历处理
                    // 因为有可能“父节点的父节点的父节点”还是为红色
                    entry = parentOf(parentOf(entry));
                }
                // 当叔叔节点为黑色时(父红&叔黑)
                else { // 【情况四】和【情况七】
                    // 1.当新增节点为右子树时(父红&叔黑&且新增节点为右子树&父左子树)
                    if (entry == rightOf(parentOf(entry))) { // 【情况七】
                        // 把entry的父节点进行左旋
                        rotateLeft(entry.parent);
                    }
                    // 2.新增节点为左子树时
                    // 父红&叔黑&并且新增节点和父节点都为左子树 【情况四】
                    // 设置entry的父节点为黑色
                    setColor(parentOf(entry), BLACK);
                    // 设置entry的父节点的父节点为红色
                    setColor(parentOf(parentOf(entry)), RED);
                    // 设置entry父节点的父节点右旋
                    rotateRight(parentOf(parentOf(entry)));
                }
            }
            // 当entry的父节点属于右侧节点时
            else {
                // 获取entry的左侧叔叔节点
                Entry<K, V> uncle = leftOf(parentOf(parentOf(entry)));
                // 当叔叔节点为红色时(父红&叔红)
                if (colorOf(uncle) == RED) {// 【情况三】
                    // 将父节点设置为黑色
                    setColor(parentOf(entry), BLACK);
                    // 将叔节点设置为黑色
                    setColor(uncle, BLACK);
                    // 将父节点的父节点设置为红色
                    setColor(parentOf(uncle), RED);
                    // 更新entry,通过循环继续遍历处理
                    // 因为有可能“父节点的父节点的父节点”还是为红色
                    entry = parentOf(parentOf(entry));
                }
                // 当叔叔节点为黑色时(父红&叔黑)
                else { // 【情况五】和【情况六】
                    // 1.当新增节点为左子树时(父红&叔黑&且新增节点为左子树&父右子树)
                    if (entry == leftOf(parentOf(entry))) { // 【情况六】
                        // 把entry的父节点进行右旋
                        rotateRight(entry.parent);
                    }
                    // 2.新增节点为右子树时
                    // 父红&叔黑&并且新增节点和父节点都为右子树 【情况五】
                    // 设置entry的父节点为黑色
                    setColor(parentOf(entry), BLACK);
                    // 设置entry的父节点的父节点为红色
                    setColor(parentOf(parentOf(entry)), RED);
                    // 设置entry父节点的父节点左旋
                    rotateLeft(parentOf(parentOf(entry)));
                }
            }
        }
        // 将根节点强制设置为黑色
        setColor(root, BLACK);
    }
    // 此处省略Entry节点类
}

6. 总结

1. 按照红黑树要求,将节点插入到树中。

2. 新增节点默认为红色,父子节点出现两个红色, 需要进行左旋转或右旋转, 旋转可以理解为父节点向左转动还是向右转动, 必须保证最终根节点为黑色。

7、TreeSet和HashSet

1.源码分析

TreeSet和HashSet底层是TreeMap和HashMap。

把Set的值当做Map的Key,Map中Value存储new Object()

六、三代集合对比

1.第一代(旧的集合类)

Vector

实现原理和ArrayList相同,功能相同,都是长度可变的数组结构,很多情况下可以互用。

两者的主要区别如下:

  • Vector是早期JDK接口,ArrayList是替代Vector的新接口

  • Vector线程安全,效率低下;ArrayList重速度轻安全,线程非安全

  • 长度需增长时,Vector默认增长一倍,ArrayList增长50%

Hashtable类

实现原理和HashMap相同,功能相同,底层都是哈希表结构,查询速度快,很多情况下可互用。

两者的主要区别如下:

  • Hashtable是早期JDK提供,HashMap是新版JDK提供

  • Hashtable继承Dictionary类,HashMap实现Map接口

  • Hashtable线程安全,HashMap线程非安全

  • Hashtable不允许key的null值,HashMap允许null值

public class TestVector {
    public static void main(String[] args) {
        //泛型是1.5开始的,重新改写了Vector,ArrayList
        Vector<Integer> v = new Vector<Integer>();        
        v.addElement(123);
        v.addElement(456);
        v.addElement(345);
        v.addElement(100);        
        Enumeration<Integer> en = v.elements();
        while(en.hasMoreElements()){
            Integer elem = en.nextElement();
            System.out.println(elem);
        }
    }
}

2.第二代

 List 、Set 和Map属于第二代。

3.第三代

在大量并发情况下如何提高集合的效率和安全呢? 

提供了新的线程同步集合类,位于java.util.concurrent包下,使用Lock锁或者volatile+CAS的无锁化。

ConcurrentHashMap

CopyOnWriteArrayList

CopyOnWriteArraySet

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值