人工智能-监督学习方法

本文概述了监督学习(如决策树、信息增益和SVM)和无监督学习(如聚类和降维)的特点,重点介绍了决策树的构建、信息熵的计算以及支持向量机的算法思想和核函数的应用。同时,对比了线性判别分析(LDA)与PCA的差异。
摘要由CSDN通过智能技术生成

监督学习方法的特点

1.数据集是给定带有标签信息

2.训练一个从x和映射到f的映射,进行预测等

3.应用于回归或者分类任务中

三部分内容:

1.从训练数据集中得到映射函数f

2.在测试数据集上测试映射函数f

3.在未知数据集上测试映射函数f

无监督学习方法的特点(对比监督学习)

1.数据集是给定带有无标签信息

2.挖掘数据中有价值的有用信息

3.应用于聚类或降维任务中

决策树

定义:是一种通过树形结构来进行分类的方法,决策树可以看作是一系列以叶子结点为输出的决策规则。

构建决策树

这里涉及到纯度的概念,纯度越高,则更便于决策,有三种方法(指标)可以对纯度以及如何进行决策进行判断。

信息熵(E(D)):信息熵越高,集合的不确定性越大,纯度越低,越不利于分类,通常先选择信息熵最低的属性

信息熵的公式:(记得负号

1.信息增益(Gain)

此时的Ent(D)算的是目标变量的信息熵

Ent(Di)计算的是某个属性中,每个子样本集(每个分支结点)在目标变量的影响下得到的信息熵

2.信息增益率(Gain-ratio)

在信息增益Gain上除以属性本身带来的信息info

属性本身带来的信息info:

3.Gini系数

支持向量机

支持向量机

以往的模型性能从训练样本集所得经验风险来衡量,而svm通过结构风险最小化来解决过学习问题。支持向量机会寻找一个最佳超平面,使得每个类别中距离超平面最近的样本点到超平面的最小距离最大。

算法思想

找到集合边缘上的若干数据(支持向量),找一个超平面,使得支持向量到该平面的距离最大

超平面

点到超平面的距离

点到平面的距离

算法目的

找w和b,最大化d

算法求解

最小化目标 以及 限制

利用拉格朗日乘子法和KKT条件求最优解

核函数

原始的样本空间不一定是线性可分的,此时可以将样本原始的空间映射到一个更加高位的特征空间去,使得样本在这个特征空间中高改了线性可分

线性可分svm

松弛变量 软间隔 hinge损失函数
核函数(线性不可分svm)

线性判别分析(LDA)

定义:LDA是一种基于监督学习的降维方法,LDA利用类别信息将高维数据线性投影到一个低维空间,和PCA一样,都在寻找最佳解释数据的变量线性组合,均是优化寻找特征向量w来实现降维

与PCA的区别:

寻找目标不同:

降维的维度选择不同:

原则:类内方差小,类间间隔大

协方差矩阵

假设目标变量的类别为2

投影后的表达式

类别C1投影后的协方差矩阵

  • 9
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值