【面经&八股】搜广推方向:常见面试题(五)

本文详细探讨了推荐系统中如何在召回阶段抑制热门item以实现个性化,以及用户和物品冷启动的解决方案。介绍了Tensorflow与PyTorch的区别,以及推荐系统中的多路召回策略,如基于内容匹配、协同过滤、流行度和上下文的召回。同时,讨论了决策树构造的指标和交叉熵作为损失函数的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【面经&八股】搜广推方向:常见面试题(五)

1. 推荐系统召回阶段如何实现热门 item 的打压?(推荐中的“哈利波特”效应)

在召回的排序中,由于热门 Item 的多数来源于用户点击过,item+主要都是热门item,会使模型一定程度上丧失个性化。解决方案主要是在召回阶段控制选择正负样本的概率(对热门的惩罚):

  1. 生成Item+时,根据热门程度对正样本进行打压。
  2. 生成Item-时,热门程度更高的item更有可能被选定为负样本(hard negative)。

一个简单的方式是对表示热门程度特征值取对数(叉烧大佬提供),对越高频的样本打击力度越大,且打击后热门item流行度特征仍然是优于冷门item的。

  • 另外是否需要对热门进行打压是根据业务来的,实际上在流量至上的年代,有些应用不打压热门,这样更容易制造话题提高热度,带来的负面影响就是用户个性化被忽视了。
  • 另外,在排序过程中,合理的用户画像能够帮助模型打压不合用户喜好的热门item。

2. 关于推荐系统的召回模型<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋冬无暖阳°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值