问题1:召回分支的作用是什么?
解析:快速帮助用户找到可能感兴趣的候选物品;减少排序模型的候选输入,降低系统RT。
问题2:如何离线评价召回阶段各种模型算法的好坏?由于没有明确的召回预期值,所以无论rmse还是auc都不知道该怎么做?
解析:召回最直接的评估就是召回率,也就是召回集里正样本的比例;也可以不同的召回算法+同一个排序算法,还是用排序之后的AUC和RMSE来评估。
双12限时秒杀,不止5折,活动会场-->www.julyedu.com
七月在线双12活动正式开启 · 40门AI好课1分起秒!涵盖 ML | DL | CV | NLP | 推荐 全方向程!
问题3:简述Multi-task learning(MLT)多任务学习
解析:在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI。为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务。
然后,我们通过精细调参,来改进模型直至性能不再提升。尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好。
具体来说,这些信息就是相关任务的监督数据。通过在相关任务间共享表示信息,我们的模型在原始任务上泛化性能更好。这种方法称为多任务学习(Multi-Task Learning)</