推荐系统经典面试题(附答案和解析)

本文涵盖了推荐系统面试中的经典问题,包括召回分支的作用、离线评价召回模型的方法、多任务学习概念、特征选择策略、特征交叉方式、阿里X-Deep Learning在在线学习的解决方案、FTRL的技巧、逻辑回归在大规模广告点击率预估的局限、知识图谱在推荐系统的应用以及Collaborative Knowledge Base Embedding的三种知识学习。
摘要由CSDN通过智能技术生成

问题1:召回分支的作用是什么?

解析:快速帮助用户找到可能感兴趣的候选物品;减少排序模型的候选输入,降低系统RT。

问题2:如何离线评价召回阶段各种模型算法的好坏?由于没有明确的召回预期值,所以无论rmse还是auc都不知道该怎么做?

解析:召回最直接的评估就是召回率,也就是召回集里正样本的比例;也可以不同的召回算法+同一个排序算法,还是用排序之后的AUC和RMSE来评估。


双12限时秒杀,不止5折,活动会场-->www.julyedu.com

七月在线双12活动正式开启 · 40门AI好课1分起秒!涵盖 ML | DL | CV | NLP | 推荐 全方向程!


问题3:简述Multi-task learning(MLT)多任务学习

解析:在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI。为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务。

然后,我们通过精细调参,来改进模型直至性能不再提升。尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好。

具体来说,这些信息就是相关任务的监督数据。通过在相关任务间共享表示信息,我们的模型在原始任务上泛化性能更好。这种方法称为多任务学习(Multi-Task Learning)</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值