05 线性代数

标量由只有一个元素的张量表示

import torch

x = torch.tensor([3.0])
y = torch.tensor([2.0])

x + y, x * y, x / y, x**y
》》》
(tensor([5.]), tensor([6.]), tensor([1.5000]), tensor([9.]))

可以将向量视为标量值组成的列表

x = torch.arange(4)
x
》》》
tensor([0, 1, 2, 3])

通过张量的索引来访问任一元素

x[3]
》》》
tensor(3)

访问张量的长度

len(x)
》》》
4

只有一个轴的张量,形状只有一个元素

x.shape
》》》
torch.Size([4])

通过指定两个分量m和 n来创建一个形状为m×n的矩阵

A = torch.arange(20).reshape(5, 4)
A
》》》
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15],
        [16, 17, 18, 19]])

矩阵的转置

A.T
》》》
tensor([[ 0,  4,  8, 12, 16],
        [ 1,  5,  9, 13, 17],
        [ 2,  6, 10, 14, 18],
        [ 3,  7, 11, 15, 19]])

就像向量是标量的推广,矩阵是向量的推广一样,我们可以构建具有更多轴的数据结构

X = torch.arange(24).reshape(2, 3, 4)
X
》》》
tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],

        [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]])

两个矩阵的按元素乘法称为哈达玛积(Hadamard product)(数学符号⊙)

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  #通过分配新内存,将A的一个副本给B;但是b=a没有新id
A * B
》》》
tensor([[  0.,   1.,   4.,   9.],
        [ 16.,  25.,  36.,  49.],
        [ 64.,  81., 100., 121.],
        [144., 169., 196., 225.],
        [256., 289., 324., 361.]])
a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
》》》
(tensor([[[ 2,  3,  4,  5],
          [ 6,  7,  8,  9],
          [10, 11, 12, 13]],
 
         [[14, 15, 16, 17],
          [18, 19, 20, 21],
          [22, 23, 24, 25]]]),
 torch.Size([2, 3, 4]))

 计算其元素的和

x = torch.arange(4, dtype=torch.float32)
x, x.sum()
》》》
(tensor([0., 1., 2., 3.]), tensor(6.))

指定张量沿哪一个轴来通过求和降低维度

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
》》》
(tensor([40., 45., 50., 55.]), torch.Size([4]))
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
》》》
(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))
A.sum(axis=[0, 1]) #same as A.sum()
》》》
tensor(190.)

一个与求和相关的量是平均值(mean或average)

A.mean(), A.sum() / A.numel() #元素数量
》》》
(tensor(9.5000), tensor(9.5000))

A.mean(axis=0), A.sum(axis=0) / A.shape[0]
》》》
(tensor([ 8.,  9., 10., 11.]), tensor([ 8.,  9., 10., 11.]))

计算总和或均值时保持轴数不变(保持维度不变)

sum_A = A.sum(axis=1, keepdims=True)
sum_A
》》》
tensor([[ 6.],
        [22.],
        [38.],
        [54.],
        [70.]])

通过广播将A除以sum_A

如果要用广播那么A和sum_A的维度个数得一样,所有就有了上面的keepdims=True

A / sum_A
》》》
tensor([[0.0000, 0.1667, 0.3333, 0.5000],
        [0.1818, 0.2273, 0.2727, 0.3182],
        [0.2105, 0.2368, 0.2632, 0.2895],
        [0.2222, 0.2407, 0.2593, 0.2778],
        [0.2286, 0.2429, 0.2571, 0.2714]])

某个轴计算A元素的累积总和

A.cumsum(axis=0)
》》》
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  6.,  8., 10.],
        [12., 15., 18., 21.],
        [24., 28., 32., 36.],
        [40., 45., 50., 55.]])

点积是相同位置的按元素乘积的和

y = torch.ones(4, dtype=torch.float32)
x, y, torch.dot(x, y)
》》》
(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))

我们可以通过执行按元素乘法,然后进行求和来表示两个向量的点积

torch.sum(x * y)
》》》
tensor(6.)

矩阵向量积

A.shape, x.shape, torch.mv(A, x)
》》》
(torch.Size([5, 4]), torch.Size([4]), tensor([ 14.,  38.,  62.,  86., 110.]))

我们可以将矩阵-矩阵乘法AB看作是简单地执行m次矩阵-向量积,并将结果拼接在一起,形成一个n×m矩阵

B = torch.ones(4, 3)
torch.mm(A, B)
》》》
tensor([[ 6.,  6.,  6.],
        [22., 22., 22.],
        [38., 38., 38.],
        [54., 54., 54.],
        [70., 70., 70.]])

L2范数是向量元素平方和的平方根

u = torch.tensor([3.0, -4.0])
torch.norm(u)
》》》
tensor(5.)

L1范数,它表示为向量元素的绝对值之和

torch.abs(u).sum()
》》》
tensor(7.)

矩阵 的弗罗贝尼乌斯范数(Frobenius norm)是矩阵元素平方和的平方根:F范数

torch.norm(torch.ones((4, 9)))
》》》
tensor(6.)

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值