- 博客(7)
- 收藏
- 关注
原创 [论文精读]6_MTBullyGNN: A Graph Neural Network-Based Multitask Framework for Cyberbullying Detection
网络欺凌是社交媒体的疾病,考虑到其毒性、传播速度以及可能造成的破坏规模,自动检测具有重要意义。然而,由于其伪装行为、内容中的噪声以及最近引入的语言混杂,在线欺凌检测(CD)的问题变得非常困难。在本文中,我们提出了一种新颖的。
2024-03-25 22:11:52
1913
原创 [论文挑读]TRAC2022
与前几届一样,TRAC 的重点是应用 NLP、ML 以及有关攻击和无礼的实用研究来解决这些问题。因此,研讨会还包括 "攻击识别 "的共同任务。该任务由两个子任务组成: (1) 上下文中的偏见、威胁和攻击识别;(2) 跨领域概括–COVID-19。在任务 1 中,参与者会收到一条评论 “线程”,其中包含不同类型偏见和威胁(即性别偏见、性别威胁和无性别威胁等)的存在信息,以及其与前一条评论和原帖之间的话语关系(即攻击、教唆、辩护、反驳和气话)。
2024-03-20 22:34:05
171
原创 [论文精读]心理健康文本中认知扭曲的自动检测和分类
使用机器学习框架来自动检测和分类心理健康文本中的15种常见认知扭曲。认知扭曲是认知心理学中的一个概念,指的是自动化和自我加强的非理性思维模式。这些思维模式如果不加以控制,会导致患者陷入不健康的负面思维反馈循环中,从而产生与焦虑和抑郁相关的对现实的不准确感知。首次尝试使用机器学习技术从文本中检测和分类大量(15种)认知扭曲。收集了两个新的心理健康自由文本数据集,一个来自众包平台,另一个来自现实世界的在线治疗程序。
2024-03-14 21:42:01
778
原创 [论文挑读]使用 BERTopic 改进 Twitter 中的阿拉伯语认知扭曲分类
文章旨在改善阿拉伯语推特中认知失调的分类,通过结合BERTopic主题建模技术和文本表示方法,提出了一种新的方法。该方法利用上下文主题嵌入丰富文本表示,以应对短文本数据的挑战,提高分类准确性。研究表明,利用BERTopic生成的主题信息可以有效改善认知失调分类任务的性能。
2024-03-14 12:00:40
895
原创 [论文挑读]4_C2D2数据集:认知扭曲
认知扭曲是指非理性思维模式,可能导致个人对现实的扭曲认知和心理健康问题。以网暴作为背景来看的话,作者还检查了被诊断患有精神障碍的个人共享的社交媒体文本中是否存在认知扭曲,从而深入了解认知扭曲与心理健康状况之间的关联。基于此,我们可以从认知扭曲的角度来分析网暴。
2024-03-13 22:38:37
1720
原创 [论文精读]3_讽刺检测综述
2018年的讽刺检测综述,迄今为止(到2018年)研究中的三个里程碑:通过半监督模式提取来识别隐含情感、使用基于标签的监督以及使用目标文本以外的上下文。文章介绍讽刺检测的数据集、方法、趋势和问题,并提供了一个表格,该表格从特征、注释技术、数据形式等不同维度总结了以往的论文文章安排:第 2 节首先介绍了语言学中的讽刺研究。然后,第 3 节介绍了讽刺检测的不同问题定义。第 4 节和第 5 节分别讨论了数据集和已报道的讽刺语言检测方法。第 7 节强调了讽刺语言检测的发展趋势,第 8 节讨论了反复出现的问题。
2024-03-11 16:17:05
2162
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人