[论文挑读]使用 BERTopic 改进 Twitter 中的阿拉伯语认知扭曲分类

文章介绍了一种利用BERTopic主题建模技术改进阿拉伯语推特中认知失调分类的方法。通过上下文主题嵌入,解决了短文本的挑战,提高了分类性能。研究证实了主题信息对改善分类任务的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Improving Arabic Cognitive Distortion Classification in Twitter using BERTopic

Abstract

文章旨在改善阿拉伯语推特中认知失调的分类,通过结合BERTopic主题建模技术和文本表示方法,提出了一种新的方法。该方法利用上下文主题嵌入丰富文本表示,以应对短文本数据的挑战,提高分类准确性。研究表明,利用BERTopic生成的主题信息可以有效改善认知失调分类任务的性能。

Summary

这篇文章提出了一种基于机器学习的方法,旨在通过利用BERTopic技术中的潜在主题来丰富文本表示,从而改善在Twitter上对阿拉伯语内容中认知失调的分类任务。文章指出社交媒体文本的短文本长度和共现模式稀疏性是挑战,而提出的方法通过利用潜在主题分布来克服这些挑战。

研究表明,利用BERTopic模型生成的上下文主题嵌入可以提供更好的文本表示,从而改善分类器对不同认知失调类别的识别能力。实验结果显示,这种丰富的表示方式优于基准模型,证明了利用潜在主题增强认知失调分类在阿拉伯语推文中的有效性。

总的来说,该研究利用了主题建模技术和预训练语言模型,通过丰富文本表示来提高认知失调分类的性能,弥补了社交媒体文本短文本长度和共现模式稀疏性带来的挑战。这种方法为处理阿拉伯语推文中的认知失调提供了新的视角和解决方案。

Three Questions

1. 所提出的基于机器学习的方法如何增强 Twitter 上阿拉伯语内容认知扭曲的分类?
提出的基于机器学习的方法通过利用从BERTopic技术获取的潜在主题来丰富文本表示,从而增强了在Twitter上对阿拉伯语内容中认知失调的分类。通过定义推文中的潜在主题,该方法解决了社交媒体内容中文本长度不足和共现模式稀疏性的挑战。这种丰富

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值