Improving Arabic Cognitive Distortion Classification in Twitter using BERTopic
Abstract
文章旨在改善阿拉伯语推特中认知失调的分类,通过结合BERTopic主题建模技术和文本表示方法,提出了一种新的方法。该方法利用上下文主题嵌入丰富文本表示,以应对短文本数据的挑战,提高分类准确性。研究表明,利用BERTopic生成的主题信息可以有效改善认知失调分类任务的性能。
Summary
这篇文章提出了一种基于机器学习的方法,旨在通过利用BERTopic技术中的潜在主题来丰富文本表示,从而改善在Twitter上对阿拉伯语内容中认知失调的分类任务。文章指出社交媒体文本的短文本长度和共现模式稀疏性是挑战,而提出的方法通过利用潜在主题分布来克服这些挑战。
研究表明,利用BERTopic模型生成的上下文主题嵌入可以提供更好的文本表示,从而改善分类器对不同认知失调类别的识别能力。实验结果显示,这种丰富的表示方式优于基准模型,证明了利用潜在主题增强认知失调分类在阿拉伯语推文中的有效性。
总的来说,该研究利用了主题建模技术和预训练语言模型,通过丰富文本表示来提高认知失调分类的性能,弥补了社交媒体文本短文本长度和共现模式稀疏性带来的挑战。这种方法为处理阿拉伯语推文中的认知失调提供了新的视角和解决方案。
Three Questions
1. 所提出的基于机器学习的方法如何增强 Twitter 上阿拉伯语内容认知扭曲的分类?
提出的基于机器学习的方法通过利用从BERTopic技术获取的潜在主题来丰富文本表示,从而增强了在Twitter上对阿拉伯语内容中认知失调的分类。通过定义推文中的潜在主题,该方法解决了社交媒体内容中文本长度不足和共现模式稀疏性的挑战。这种丰富