[论文精读]心理健康文本中认知扭曲的自动检测和分类

Automatic Detection and Classification of Cognitive Distortions in Mental Health Text


Author:Benjamin Shickel
Date:10/2020
Publisher:2020 IEEE 20th International Conference on Bioinformatics and Bioengineering

Abstract

使用机器学习框架来自动检测和分类心理健康文本中的15种常见认知扭曲。认知扭曲是认知心理学中的一个概念,指的是自动化和自我加强的非理性思维模式。这些思维模式如果不加以控制,会导致患者陷入不健康的负面思维反馈循环中,从而产生与焦虑和抑郁相关的对现实的不准确感知。

主要贡献:
首次尝试使用机器学习技术从文本中检测和分类大量(15种)认知扭曲。
收集了两个新的心理健康自由文本数据集,一个来自众包平台,另一个来自现实世界的在线治疗程序。
通过无监督的机器学习技术,基于内容的聚类和主题建模算法,探索了相似认知扭曲之间的主题关系。
强调了在现实世界中应用基于心理健康的机器学习所面临的困难,并讨论了该框架对于改善与传统认知行为疗法相结合的自动化治疗交付的潜在影响和益处。

Model

  1. 任务:认知扭曲检测和分类。检测任务旨在区分包含认知扭曲的文本和不包含扭曲的文本。扭曲分类任务则旨在对已知包含扭曲的文本进行分类,确定其属于15种认知扭曲中的哪一种。
  2. 模型:逻辑回归(Logistic Regression),对于分类任务:为每种认知扭曲训练一个逻辑回归模型,然后使用“一对其余”的方法将它们聚合起来。这意味着对于每一种扭曲,都有一个独立的模型来预测文本是否包含该扭曲。
  3. 输入特征的处理:基于空格的分词->构建unigram和bigrams的集合->向量化->tf-idf->归一化->模型输入
  4. 训练:使用5折交叉验证来评估模型性能,并通过网格搜索选择最优的超参数
  5. 无监督学习:由于认知扭曲的最佳分类在心理学界还未达成明确的基于证据的共识,因此采用无监督学习方法分类。
    使用层次聚类和LDA来理解不同认知扭曲之间的潜在关系,这有助于更好地理解数据的结构。

Result

研究者成功地应用了机器学习技术来自动检测和分类心理健康文本中的认知扭曲。
逻辑回归模型在两个任务上都取得了令人满意的结果,尤其是在分类任务上。
无监督探索提供了对认知扭曲之间关系的新见解,并为未来可能的分类调整提供了数据支持。

Discussion

主要发现
研究者开发的机器学习模型能够有效地检测和分类心理健康文本中的认知扭曲,这对于在线心理健康服务的提供具有重要意义。
模型在检测扭曲文本方面表现出色,但在识别非扭曲文本方面存在挑战,这可能与数据集中的类别不平衡有关。
在分类任务中,模型能够以较高的准确度识别出特定的认知扭曲,尽管某些扭曲类型的分类准确度低于其他类型。
模型性能
研究者指出,尽管模型在分类任务上取得了良好的结果,但仍有改进的空间,特别是在处理非扭曲文本和较少见扭曲类型时。
无监督探索的结果揭示了认知扭曲之间可能存在的自然分组,这可能有助于简化模型并提高分类性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值