毫米波雷达技术:(五)距离-多普勒图谱,以及 FMCW 信号帧结构的设计

(一) 距离-多普勒图谱( R a n g e − D o p p l e r   F F T Range-Doppler~FFT RangeDoppler FFT 2 D − F F T 2D-FFT 2DFFT)的结果):

在这里插入图片描述

1)range-bins(距离单元):

上述步骤②的图中,每一行的每个小方块本质上是代表了一小段频率,但是由于 R a n g e   F F T Range~FFT Range FFT 的频率就代表了距离,故又称为距离单元。

2)工程执行步骤:

实际应用中,步骤①表示的矩阵行列数是预先设置好的,后续会填充进一个帧的数据。系统会先按照步骤②,对每一条 c h i r p chirp chirp 的中频信号进行有序地 A D C ADC ADC 采样,然后进行 R a n g e   F F T Range~FFT Range FFT ,接着将中频信号的频率按照顺序填充进每一行的小方块里;并且只有当此矩阵的所有小方格都被 填充完毕(即对此帧中的所有 c h i r

### 4D毫米波雷达工作原理详解 #### 工作机制概述 4D毫米波雷达通过发射电磁波并接收目标反射回来的信号来获取环境信息。这种类型的雷达不仅能够检测到目标的位置,还能提供关于目标的速度、方向以及形态的信息[^1]。 #### 多维度数据采集 具体来说,4D毫米波雷达可以在四个维度上收集数据: - **距离 (Range)**:利用频率调制连续波(FMCW) 技术测量目标与传感器之间的直线距离- **水平角度 (Azimuth)** 和 **俯仰角度 (Elevation)** :借助MIMO天线阵列实现高精度的角度定位,从而精确描绘出目标的空间位置[^2]。 - **速度 (Doppler)** :基于多普勒效应计算目标相对于雷达运动的速度矢量。 ```python import numpy as np def calculate_doppler_frequency(frequency, velocity): """ 计算多普勒频移 参数: frequency : float - 发射信号中心频率(Hz) velocity : float - 物体径向速度(m/s) 返回: doppler_shift : float - 多普勒频移(Hz) """ speed_of_light = 3e8 # 光速 m/s wavelength = speed_of_light / frequency return 2 * velocity / wavelength ``` #### 数据处理流程 为了提高分辨率和准确性,4D毫米波雷达采用了先进的信号处理算法。当遇到在同一距离上的多个不同速度的目标时,传统的方法可能会失效;但是现代4D毫米波雷达可以通过复杂的傅里叶变换和其他高级技术分离这些信号,进而区分各个独立的目标对象[^4]。 此外,相较于传统的毫米波雷达,4D版本能够捕捉更多细节丰富的回波信息点,形成类似于LiDAR那样的密集点云图谱,使得系统不仅能感知周围环境中存在什么物体,还可以初步分析其外形特征甚至类别属性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值