毫米波雷达技术:(三)如何利用中频信号测距、雷达距离分辨率的公式推导,以及Range FFT

(一)数字信号处理(DSP)的知识回顾:

  • 对于连续信号:自然频率分辨率为 Δ f = 1 T Δf=\frac{1}{T} Δf=T1 (两个信号的频率差大于此值,FFT才能区分开), T T T 是连续信号时域持续时间;

  • 对于离散信号:角频率分辨率为 Δ ω = 2 π N Δω=\frac{2π}{N} Δω=N2π (两个信号的角频率差大于此值,FFT才能区分开), N N N 是离散信号的时域点数。

  • 对两个幅值不变,但相位周期性变化的复数序列 A e j Φ 1 Ae^{jΦ_1} AejΦ1 A e j Φ 2 Ae^{jΦ_2} AejΦ2 进行FFT:

    % 参数设置
    A = 1;            % 两个复数序列的幅值(相等)
    omega1 = 2 * pi * 5; % 第一个复数序列的数字角频率(例如,5 Hz)
    omega2 = 2 * pi * 10;% 第二个复数序列的数字角频率(例如,10 Hz)
    Phi1 = pi / 4;     % 第一个复数序列的初始相位
    Phi2 = -pi / 4;    % 第二个复数序列的初始相位
    N = 64;            % 序列长度(必须是2的幂)
    Fs = 64;           % 采样频率
    T = 1/Fs;          % 采样周期
    t = (0:N-1) * T;   % 时间向量
    
    % 生成两个复数序列
    complex_sequence1 = A * exp(1i * (omega1 * t + Phi1));
    complex_sequence2 = A * exp(1i * (omega2 * t + Phi2));
    
    
    % 分别绘制两个复数序列的实部和虚部
    figure; % 新的figure用于显示第一个复数序列的实部和虚部
    % 2x2的子图布局
    subplot(2,2,1); % 第1个子图:第一个复数序列的实部
    stem(t, real(complex_sequence1), 'filled', 'r'); % 使用stem函数绘制实部,红色
    title('Real Part of Sequence 1');
    xlabel('Time (s)');
    ylabel('Amplitude');
    grid on;
     
    subplot(2,2,2); % 第2个子图:第一个复数序列的虚部
    stem(t, imag(complex_sequence1), 'filled', 'b'); % 使用stem函数绘制虚部,蓝色
    title('Imaginary Part of Sequence 1');
    xlabel('Time (s)');
    ylabel('Amplitude');
    grid on;
     
    subplot(2,2,3); % 第3个子图:第二个复数序列的实部
    stem(t, real(complex_sequence2), 'filled', 'g'); % 使用stem函数绘制实部,绿色
    title('Real Part of Sequence 2');
    xlabel('Time (s)');
    ylabel('Amplitude');
    grid on;
     
    subplot(2,2,4); % 第4个子图:第二个复数序列的虚部
    stem(t, imag(complex_sequence2), 'filled', 'm'); % 使用stem函数绘制虚部,洋红色
    title('Imaginary Part of Sequence 2');
    xlabel(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值