随机数学 Chapter 0

基础不牢,地动山摇

0 基础

0.0 事件的关系

  • 包含
    • 如果事件 A A A 发生时事件 B B B 一定发生,则称事件 B B B 包含事件,记为 A ⊂ B A\subset B AB
  • 相等
    • 如果事件 A A A 和事件 B B B 相互包含,即 A ⊂ B , B ⊂ A A\subset B,B\subset A AB,BA,则称事件 A A A 与事件 B B B 相等,记为 A = B A=B A=B
  • 互不相容
    • 如果事件 A A A 和事件 B B B 在同一次试验中不可能同时发生,则称事件 A A A 与事件 B B B 是互不相容/互斥的
  • 互逆
    • 如果在每一次试验中,事件 A A A 和事件 B B B 必有一个且仅有一个发生,则称事件 A A A 与事件 B B B 是互逆/对立的,称其中一个事件是另一个事件的逆事件,记为 A ‾ = B , B ‾ = A \overline A=B,\overline B=A A=B,B=A
    • A ‾ ‾ = A \overline{\overline A}=A A=A
    • A A A B B B 在全集 Ω \Omega Ω 中的补集/余集, B B B A A A 在全集 Ω \Omega Ω 中的补集/余集

在这里插入图片描述

0.1 事件的运算

  • 事件的并
    • 如果事件 A A A 和事件 B B B 至少有一个发生,则称这样的一个事件为事件 A A A 和事件 B B B 的并事件/和事件,记为 A ∪ B A\cup B AB
  • 事件的交
    • 如果事件 A A A 和事件 B B B 同时发生,则称这样的一个事件为事件 A A A 和事件 B B B 的交事件/积事件,记为 A ∩ B A\cap B AB
  • 事件的差
    • 如果事件 A A A 发生而事件 B B B 不发生,则称这样的一个事件为事件 A A A 和事件 B$ 的差事件,记为 A − B A-B AB

在这里插入图片描述

0.3 运算律

  • 交换律
    • A ∪ B = B ∪ A , A B = B A A\cup B=B\cup A,AB=BA AB=BA,AB=BA
  • 结合律
    • ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) , ( A B ) C = A ( B C ) (A\cup B)\cup C=A\cup(B\cup C),(AB)C=A(BC) (AB)C=A(BC),(AB)C=A(BC)
  • 分配律
    • A ( B ∪ C ) = ( A B ) ∪ ( A C ) , A ∪ ( B C ) = ( A ∪ B ) ( A ∪ C ) A(B\cup C)=(AB)\cup(AC),A\cup(BC)=(A\cup B)(A\cup C) A(BC)=(AB)(AC),A(BC)=(AB)(AC)
  • 对偶律
    • A ∪ B ‾ = A ‾ B ‾ , A B ‾ = A ‾ ∪ B ‾ \overline{A\cup B}=\overline {A}\overline {B},\overline{AB}=\overline A\cup\overline B AB=AB,AB=AB

1 概率

K o l m o g o r v Kolmogorv Kolmogorv 于 1933 年提出了概率论的公理化结构

设随机实验 E E E 的样本空间为 Ω \Omega Ω,如果对于 E E E 的每一个事件 A A A,有唯一的实数 P ( A ) P(A) P(A) 和它对应,且这个事件的函数 P ( A ) P(A) P(A) 满足以下条件

  • 非负性
    • 对于任意事件 A A A,有 P ( A ) ≥ 0 P(A)\geq 0 P(A)0
  • 规范性
    • 对于必然事件 Ω \Omega Ω,有 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
  • 可列可加性
    • 对于两两互不相容的事件 A 1 , A 2 , ⋯ A_1,A_2,\cdots A1,A2,,有 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i) P(i=1Ai)=i=1P(Ai)

则称 P ( A ) P(A) P(A) 为事件 A A A 的概率

1.1 性质

  1. 对于不可能事件 ∅ \emptyset ,有 P ( ∅ ) = 0 P(\emptyset)=0 P()=0
  2. 对于任意事件 A A A,有 P ( A ) ≤ 1 P(A)\leq 1 P(A)1
  3. 对于任意事件 A A A,有 P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)
  4. 加法公式
    对于任意事件 A A A 与事件 B B B,有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
  5. 减法公式
    对于任意事件 A A A 与事件 B B B,有 P ( B − A ) = P ( B ) − P ( A B ) P(B-A)=P(B)-P(AB) P(BA)=P(B)P(AB)
  6. 有限可加性
    对于两两互不相容事件 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An,有 P ( ⋃ i = 1 n ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^n)=\sum_{i=1}^nP(A_i) P(i=1n)=i=1nP(Ai)
  7. 如果 A ⊂ B A\subset B AB,那么 P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A)
  8. 对于任意事件 A A 与事件 B B B,有 P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A\cup B)\leq P(A)+P(B) P(AB)P(A)+P(B)
  9. 一般加法公式 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j < k ≤ n ( A i A j A k ) + ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 ⋯ A n ) P(\bigcup_{i=1}^\infty A_i)=\sum_{i=1}^nP(A_i)-\sum_{1\leq i<j\leq n}P(A_iA_j)+\sum_{1\leq i<j<k\leq n}(A_iA_jA_k)+\cdots+(-1)^{n-1}P(A_1A_2\cdots A_n) P(i=1Ai)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<kn(AiAjAk)++(1)n1P(A1A2An)

@date 2022年 05月 06日 星期五 10:18:30 CST
@version 1.0
@by Wolfafka

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MiXLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值