随机过程_chapter01_预备知识

样本空间

如果一个试验E,满足下列条件:

  • (1) 在相同的条件下可以重复进行;
  • (2) 每次试验的结果不止一个,并且能事先明确试验的所有结果;
  • (3) 一次试验结束之前,不能确定哪一个结果会出现,称此试验为随机试验.

随机试验的所有结果所组成的集合称为该试验的样本空间,记为Ω

随机事件

定义(σ代数):设随机试验E 的样本空间为Ω,F 是Ω的子集组成的集族,满足:

(1) Ω∈F ;
(2)若A∈F,则 A ˉ ∈ F \bar{A}∈F AˉF(对逆运算封闭)
(3)若Ai ∈F(i=1,2,…), ⋃ i = 1 ∞ A i ϵ F \bigcup_{i=1}^{\infty}A_i\epsilon F i=1AiϵF(对可列并运算封闭)

称F为Ω的一个σ-代数(事件体), F 中的集合称为事件.

概率的公理化定义

设(Ω,F)是一可测空间,对A∈F定义在F上的实值集函数P(A), 满足:

(1)非负性: ∀ A ϵ F , P ( A ) > = 0 \forall A\epsilon F, P(A)>= 0 AϵF,P(A)>=0
(2)规范性:P(Ω) = 1;
(3)完全可加性: ϵ F , A i ∩ A j = φ , i ! = j , 有 P ( ∪ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) \epsilon F, A_i \cap A_j = \varphi , i != j, 有P(\cup_{i=1}^{\infty } A_i) = \sum_{i=1}^{\infty }P(A_i) ϵF,AiAj=φ,i!=j,P(i=1Ai)=i=1P(Ai)

称P是(Ω,F)上的概率(测度),P(A)是事件A的概率.三元体(Ω,F, P)称为概率空间.

概率的性质

设(Ω,F, P)是概率空间,则概率P 有如下性质:

(1) 非负性,P( ϕ \phi ϕ)=0
(2)可加性可列(有限)可加性:
(3)概率的连续性:

  • A 1 ⊃ A 2 ⊃ . . . 且 ⋂ n = 1 ∞ A n = A , 则 : lim ⁡ n → ∞ P ( A n ) = P ( A ) A_1\supset A_2 \supset ...且 \bigcap_{n=1}^{\infty} A_n = A,则: \lim_{n \to \infty}P(A_n) = P(A) A1A2...n=1An=A,:limnP(An)=P(A)

条件分布

设(X,Y)的联合分布函数为F(x, y),记
F Y ∣ X ( y ∣ x ) = P { Y < = y ∣ X = x } = lim ⁡ α , β → 0 + F ( x + β , y ) − F ( x − α , y ) F ( x + β , ∞ ) − F ( x − α , ∞ ) F_{Y | X}(y|x) = P\left \{ Y <= y | X=x \right \} \\ = \lim_{\alpha, \beta \to 0^{+}} \frac{F(x+\beta,y ) - F(x - \alpha , y)}{F(x+\beta,\infty ) - F(x - \alpha , \infty )} FYX(yx)=P{Y<=yX=x}=α,β0+limF(x+β,)F(xα,)F(x+β,y)F(xα,y)

若极限存在,称为在X=x 的条件下,随机变量X的条件分布函数

离散型随机变量(X,Y), 在y=yk条件下X的条件分布函数为:
F X ∣ Y ( x ∣ y k ) = P { X < = x ∣ y = y k } = ∑ x i < = x P ( X = x i , Y = y j ) P ( Y = y k ) F_{X | Y}(x|y_k) = P\left \{ X <= x | y=y_k \right \} \\ =\frac{\sum_{x_i<= x}^{}P(X=x_i,Y=y_j) }{P(Y=y_k)} FXY(xyk)=P{X<=xy=yk}=P(Y=yk)xi<=xP(X=xi,Y=yj)
称为条件分布率

F Y ∣ X ( y ∣ x ) = P { Y < = y ∣ X = x } = ∫ − ∞ y f ( x , v ) d v f X ( x ) F_{Y | X}(y|x) = P\left \{ Y <= y | X=x \right \} \\ = \frac{\int_{-\infty }^{y} f(x,v)dv}{f_X(x)} FYX(yx)=P{Y<=yX=x}=fX(x)yf(x,v)dv
f Y ∣ X ( y ∣ x ) = F Y ∣ X ′ ( y ∣ x ) = f ( x , y ) f X ( y ) f_{Y | X}(y|x)=F^{'}_{Y | X}(y|x) = \frac {f(x,y)}{f_X(y)} fYX(yx)=FYX(yx)=fX(y)f(x,y)
为在条件X=x 下, 随机变量Y 的条件密度函数.

数学期望,方差,协方差矩阵和相关系数矩阵

方差:

D ( x ) = ∫ − ∞ + ∞ [ x − E ( x ) ] 2 d F ( x ) > = 0 D(x) = \int_{-\infty }^{+\infty }[x-E(x)]^2dF(x) >= 0\\ D(x)=+[xE(x)]2dF(x)>=0

协方差矩阵

C i j = c o v ( X i , X j ) = E { [ X i − E ( x i ) ] [ X j − E ( x j ) ] } C_{ij} = cov(X_i, X_j) = E\left \{ [X_i - E(x_i)][X_j - E(x_j)] \right \} Cij=cov(Xi,Xj)=E{[XiE(xi)][XjE(xj)]}
C = ( C i j ) ( n ∗ n ) = ( c 11 ⋯ c 1 n ⋮ ⋱ c 2 n c n 1 ⋯ c n n ) C= (C_{ij})_{(n*n)} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & c_{2n} \\ c_{n1} & \cdots & c_{nn} \end{pmatrix} C=(Cij)(nn)=c11cn1c1nc2ncnn
‘ C ‘ 为 ( X 1 , X 2 , X 3 , . . . . , X n ) `C`为(X_1,X_2,X_3,....,X_n) C(X1,X2,X3,....,Xn)协方差矩阵
c o v ( X ) = E [ ( X − E X ) ( X − E X ) T ] c o v ( A . X ) = A . c o v ( A ) . A T cov(X) = E[(X - EX)(X - EX)^T] \\ cov(A.X) = A . cov(A). A^T cov(X)=E[(XEX)(XEX)T]cov(A.X)=A.cov(A).AT

数学期望与方差的性质

柯西不等式
E ( X Y ) 2 < = E X 2 E Y 2 {E(XY)}^2 <= EX^2EY^2 E(XY)2<=EX2EY2
等式成立的充要条件: P ( Y = a 0 X ) = 1 P(Y=a_0X) = 1 P(Y=a0X)=1

特征函数

定义:

设X是定义在(Ω,F, P )上的随机变量,称
φ ( t ) = E ( e i t X ) = ∫ − ∞ + ∞ e i t x d F ( x ) \varphi (t) = E(e^{itX}) = \int_{-\infty }^{+\infty } e^{itx} dF(x) φ(t)=E(eitX)=+eitxdF(x)
为X的特征函数

母函数

设X为非负整数值值得随机变量 P ( X = k ) = p k P(X=k) = p_k P(X=k)=pk, 则X的母函数为:
g ( s ) = E s x = ∑ k = 0 ∞ , 0 < = s < = 1 g(s) = Es^x = \sum_{k=0}^{\infty } , 0<=s <=1 g(s)=Esx=k=0,0<=s<=1
也叫做Z变换

母函数性质
  • P k = g ( k ) ( 0 ) / k ! , E ( x ( x − 1 ) . . . ( x − k + 1 ) ) = g k ( 1 ) P_k = g^(k)(0)/ k!, E(x(x-1)...(x-k+1)) = g^{k} (1) Pk=g(k)(0)/k!,E(x(x1)...(xk+1))=gk(1)
  • E X = g ′ ( 1 ) ; D ( x ) = g ′ ′ ( 1 ) + g ′ ( 1 ) − [ g ′ ( 1 ) ] 2 EX = g^{'}(1); D(x) = g^{''}(1) + g^{'}(1) - [g^{'}(1)]^2 EX=g(1);D(x)=g(1)+g(1)[g(1)]2

n维随机变量的特征函数

定义

φ ( t 1 , t 2 , t 3 , . . . , t n ) = E e i t ′ X = E [ e x p i ( t 1 x 1 + . . . . + t n x n ) ] = ∫ − ∞ + ∞ . . . ∫ − ∞ + ∞ e i ( t 1 x 1 + . . . . + t n x n ) d F ( x 1 , x 2 , . . . , x n ) ) \varphi (t_1,t_2,t_3,...,t_n) = Ee^{it^{'}X} = E[exp{i(t_1x_1 + .... + t_nx_n)}] \\ = \int_{-\infty }^{+\infty } ... \int_{-\infty }^{+\infty } e^{i(t_1x_1 + .... + t_nx_n)} dF(x_1, x_2,...,x_n)) φ(t1,t2,t3,...,tn)=EeitX=E[expi(t1x1+....+tnxn)]=+...+ei(t1x1+....+tnxn)dF(x1,x2,...,xn))

请添加图片描述
首先看下关于二维正态分布的推导过程:
首 先 看 一 下 联 合 概 率 密 度 : f ( x ) = ( 2 π ) − n 2 ∣ C ∣ e − 1 2 ( x − μ ) ′ C − 1 ( x − μ ) 联 合 特 征 函 数 : φ ( u ) = e i μ ′ μ − 1 2 μ ′ C μ 首先看一下联合概率密度: f(x)=(2\pi )^{-\frac{n}{2} }\left |C \right | e^{-\frac{1}{2} (x-\mu )' C^{-1}(x-\mu )} \\ 联合特征函数: \varphi (u) = e^{i\mu^{'}\mu - \frac{1}{2}\mu'C\mu} :f(x)=(2π)2nCe21(xμ)C1(xμ):φ(u)=eiμμ21μCμ
其中: X = ( X 1 , X 2 , X 3 , . . . , X n ) ′ ∼ N ( μ ) X=(X_1, X_2,X_3,...,X_n)^{'} \sim N(\mu ) X=(X1,X2,X3,...,Xn)N(μ)
μ = ( μ 1 , μ 2 , . . . . , μ n ) ′ \mu = (\mu_1,\mu_2,....,\mu_n)^{'} μ=(μ1,μ2,....,μn)
C = ( c i j ) n ∗ n , c i j = c o v ( X i , X j ) C=(c_{ij})_{n*n},c_{ij}=cov(X_i,X_j) C=(cij)nn,cij=cov(Xi,Xj)
其中 P C P ′ = ∧ = , P 为 正 交 矩 阵 , ∧ 为 对 角 矩 阵 PCP'=\wedge = ,P为正交矩阵,\wedge 为对角矩阵 PCP==,P,
Y ∼ N ( 0 , ∧ ) = N ( 0 , [ λ 1 0 0 0 0 λ 2 0 0 . . . . . . . . . . 0 0 0 λ 4 ] ) ( 其 中 , λ k 为 常 数 ) , 则 f ( y ) = ( 2 π ) − n 2 ∣ ∧ − 1 2 ∣ e x p { − 1 2 y ′ ∧ − 1 y } Y\sim N(0,\wedge) = N(0 , \begin{bmatrix} \lambda _1 & 0& 0 & 0\\ 0& \lambda _2 & 0& 0\\ .. & .. & .... &.. \\ 0& 0 & 0 & \lambda_4 \end{bmatrix})(其中,\lambda_k 为常数), 则f(y) = (2\pi)^{-\frac {n} {2}}\left | \wedge ^{-\frac{1}{2} } \right | exp\left \{ -\frac{1}{2} y' \wedge ^{-1} y \right \} YN(0,)=N(0,λ10..00λ2..000....000..λ4)(,λk),f(y)=(2π)2n21exp{21y1y}
对于 Y ∼ N ( 0 , 1 ) , 其 特 征 函 数 为 g X ( t ) = e − t 2 2 , 同 理 , 对 于 Y ∼ N ( 0 , ∧ ) , 则 由 函 数 的 性 质 可 知 : Y \sim N(0, 1),其特征函数为g_X(t)=e^{-\frac {t^2}{2}},同理,对于Y \sim N(0,\wedge),则由函数的性质可知: YN(0,1),gX(t)=e2t2,,YN(0,),:
ϕ Y ( u ) = e x p ( − u ′ ∧ u 2 ) = ∏ k = 1 n e x p ( − λ k 2 u k 2 ) = e x p ( − 1 2 u ′ P C P ′ u ) \phi _{Y} (u) = exp(-\frac{u^{'}\wedge u}{2} ) \\= \prod_{k=1}^{n}exp(\frac {-\lambda_k}{2}u_{k}^2) \\= exp(-\frac{1}{2} u^{'}PCP^{'}u ) ϕY(u)=exp(2uu)=k=1nexp(2λkuk2)=exp(21uPCPu)
X = P ′ Y + μ , 则 Y = P ( X − μ ) , 而 f ( x ) 多 维 随 机 概 率 密 度 为 : X=P^{'}Y + \mu,则Y=P(X-\mu), 而f(x)多维随机概率密度为: X=PY+μ,Y=P(Xμ),f(x):
f ( x ) = ( 2 π ) − n 2 ∣ C ∣ − 1 2 exp ⁡ { − 1 2 ( x − μ ) ′ C − 1 ( x − μ ) } f(x)=(2 \pi)^{-\frac{n}{2}}|C|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(x-\mu)^{\prime} C^{-1}(x-\mu)\right\} f(x)=(2π)2nC21exp{21(xμ)C1(xμ)}
对于多维随机变量的Y=AX+b特征函数: φ Y ( u ) = e i b T u φ X ( A T u ) \varphi _Y(u) = e^{ib^{T}u} \varphi _X(A^{T}u) φY(u)=eibTuφX(ATu)
ϕ X ( u ) = E [ e i u X ] = E [ e ( P ′ Y + μ ) i u ] = e i μ u ′ E [ e i u P ′ Y ] = ϕ Y ( P u ) = e i μ u ′ e − 1 2 u ′ C u \phi _{X}(u) = E[e^{iuX}] = E[e^{(P^{'}Y+\mu)iu}] \\ = e^{i\mu u^{'}}E[e^{iuP^{'}Y}]\\ = \phi _Y (Pu)\\ =e^{i\mu u^{'}} e^{-\frac{1}{2} u^{'} C u} ϕX(u)=E[eiuX]=E[e(PY+μ)iu]=eiμuE[eiuPY]=ϕY(Pu)=eiμue21uCu

性质

1.设 X = ( X 1 , X 2 , X 3 , . . , X n ) X=(X_1,X_2,X_3,..,X_n) X=(X1,X2,X3,..,Xn)是n维正态随机变量,则相互独立的充分必要条件是它们两两互不相关,即
cov(Xj,xk) = 0
2.正态随机变量的线性变换仍是正态随机变量:
若 X ∼ N ( μ , C ) , Y = K X , 则 : Y ∼ N ( K μ , K C K T ) 若 X \sim N(\mu, C), Y=KX,则: Y \sim N(K\mu, KCK^T) XN(μ,C),Y=KX,:YN(Kμ,KCKT)
3. X = ( X 1 , X 2 , . . . . , X n ) ′ ∼ N ( μ , C ) , 设 Y = ∑ k = 1 n a k X k , 其 中 a k , k = 1 , 2 , . . . , n 为 常 数 : X=(X_1,X_2,....,X_n)' \sim N(\mu , C),设 Y = \sum_{k=1 }^{n} a_kX_k, 其中a_k, k = 1,2,...,n为常数: X=(X1,X2,....,Xn)N(μ,C),Y=k=1nakXk,ak,k=1,2,...,n:
Y ∼ N ( ∑ k = 1 n a k μ k , ∑ j − 1 n ∑ k = 1 n a j a k cov ⁡ ( X j , X k ) ) Y \sim N\left(\sum_{k=1}^{n} a_{k} \mu_{k}, \sum_{j-1}^{n} \sum_{k=1}^{n} a_{j} a_{k} \operatorname{cov}\left(X_{j}, X_{k}\right)\right) YN(k=1nakμk,j1nk=1najakcov(Xj,Xk))

条件数学期望

设(X, Y)是二维随机变量,条件分布函数. F Y ∣ X ( y ∣ x )  或  F X ∣ Y ( x ∣ y ) F_{Y \mid X}(y \mid x) \text { 或 } \boldsymbol{F}_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid y) FYX(yx)  FXY(xy),若
∫ − ∞ + ∞ ∣ y ∣ d F Y ∣ X ( y ∣ x ) < ∞  或  ∫ − ∞ + ∞ ∣ x ∣ d F X ∣ Y ( x ∣ y ) < ∞ \int_{-\infty}^{+\infty}|\boldsymbol{y}| \boldsymbol{d} \boldsymbol{F}_{\boldsymbol{Y} \mid \boldsymbol{X}}(\boldsymbol{y} \mid \boldsymbol{x})<\infty \text { 或 } \int_{-\infty}^{+\infty}|\boldsymbol{x}| \boldsymbol{d} \boldsymbol{F}_{\boldsymbol{X} \mid \boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y})<\infty +ydFYX(yx)<  +xdFXY(xy)<
称为在X=x的条件下,随机变量X的条件数学期望

条件数学期望性质

(1): E ( c ∣ Y ) = c , c  是常数;  E(c \mid Y)=c, c \text { 是常数; } E(cY)=c,c 是常数
(2): E [ a X + b Y ∣ Z ] = a E ( X ∣ Z ) + b E ( Y ∣ Z ) , a , b  是常数  E[a X+b Y \mid Z]=a \mathrm{E}(X \mid Z)+b E(Y \mid Z), a, b \text { 是常数 } E[aX+bYZ]=aE(XZ)+bE(YZ),a,b 是常数 
(3):  如果  X  与Y相互独立, 则  E ( X ∣ Y ) = E ( X ) .  \text { 如果 } \mathbf{X} \text { 与Y相互独立, 则 } E(X \mid Y)=E(X) \text {. }  如果 X Y相互独立 E(XY)=E(X)

(4) E [ g ( X ) h ( Y ) ∣ X ] = g ( X ) E [ h ( Y ) ∣ X ] E [ g ( X ) h ( Y ) ∣ Y ] = h ( Y ) E [ g ( X ) ∣ Y ] \begin{array}{l} E[g(X) h(Y) \mid X]=g(X) E[h(Y) \mid X] \\ E[g(X) h(Y) \mid Y]=h(Y) E[g(X) \mid Y] \end{array} E[g(X)h(Y)X]=g(X)E[h(Y)X]E[g(X)h(Y)Y]=h(Y)E[g(X)Y]

(5) E { E [ g ( X , Y ) ∣ Y ] } = E [ g ( X , Y ) ] E\{E[g(X, Y) \mid Y]\}=E[g(X, Y)] E{E[g(X,Y)Y]}=E[g(X,Y)]
(6) E [ X − E ( X ∣ Y ) ] 2 ≤ E [ X − g ( Y ) ] 2 E[X-E(X \mid Y)]^{2} \leq E[X-g(Y)]^{2} E[XE(XY)]2E[Xg(Y)]2

条件方差

方差: Var ⁡ ( X ) = E [ ( X − μ ) 2 ] = E ( X 2 ) − [ E ( X ) ] 2 \operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-[E(X)]^{2} Var(X)=E[(Xμ)2]=E(X2)[E(X)]2

条件方差: Var ⁡ ( X ∣ Y ) = E [ ( X − E ( X ∣ Y ) ) 2 ∣ Y ] = E ( X 2 ∣ Y ) − [ E ( X ∣ Y ) ] 2 \operatorname{Var}(X \mid Y)=E\left[(X-E(X \mid Y))^{2} \mid Y\right]=E\left(X^{2} \mid Y\right)-[E(X \mid Y)]^{2} Var(XY)=E[(XE(XY))2Y]=E(X2Y)[E(XY)]2

条件推导过程:

Var ⁡ ( X ∣ Y ) = E [ ( X − E ( X ∣ Y ) ) 2 ∣ Y ] = E ( X 2 ∣ Y ) − [ E ( X ∣ Y ) ] 2 \operatorname{Var}(X \mid Y)=E\left[(X-E(X \mid Y))^{2} \mid Y\right]=E\left(X^{2} \mid Y\right)-[E(X \mid Y)]^{2} Var(XY)=E[(XE(XY))2Y]=E(X2Y)[E(XY)]2

方差分解:

Var ⁡ ( X ) = Var ⁡ [ E ( X ∣ Y ) ] + E [ Var ⁡ ( X ∣ Y ) ] \operatorname{Var}(X)=\operatorname{Var}[E(X \mid Y)]+E[\operatorname{Var}(X \mid Y)] Var(X)=Var[E(XY)]+E[Var(XY)]

证明: 对于一个随机变量X,定义:
g ( Y ) = E ( X ∣ Y ) , ϵ = X − g ( Y ) g(Y)=E(X \mid Y), \quad \epsilon=X-g(Y) g(Y)=E(XY),ϵ=Xg(Y)
推导可知:
E ( ϵ ) = E ( X ) − E [ E ( X ∣ Y ) ] = 0 E(\epsilon)=E(X)-E[E(X \mid Y)]=0 E(ϵ)=E(X)E[E(XY)]=0
此时,X的方差:
Var ⁡ ( X ) = Var ⁡ [ g ( Y ) + ϵ ] = Var ⁡ [ g ( Y ) ] + Var ⁡ ( ϵ ) + 2 Cov ⁡ [ g ( Y ) , ϵ ] \operatorname{Var}(X)=\operatorname{Var}[g(Y)+\epsilon]=\operatorname{Var}[g(Y)]+\operatorname{Var}(\epsilon)+2 \operatorname{Cov}[g(Y), \epsilon] Var(X)=Var[g(Y)+ϵ]=Var[g(Y)]+Var(ϵ)+2Cov[g(Y),ϵ]
根据协方差定义:
Cov ⁡ [ g ( Y ) , ϵ ] = E [ [ g ( Y ) − E ( g ( Y ) ) ] [ ϵ − E ( ϵ ) ] ] = 0 \operatorname{Cov}[g(Y), \epsilon]=E[[g(Y)-E(g(Y))][\epsilon-E(\epsilon)]]=0 Cov[g(Y),ϵ]=E[[g(Y)E(g(Y))][ϵE(ϵ)]]=0
又:
Var ⁡ ( ϵ ) = E [ X − g ( Y ) ] 2 = E [ X 2 + g ( Y ) 2 − 2 X g ( Y ) ] = E [ E [ X 2 ∣ Y ] − g ( Y 2 ) ] = E [ Var ⁡ ( X ∣ Y ) ] \operatorname{Var}(\epsilon)=E[X-g(Y)]^{2}=E\left[X^{2}+g(Y)^{2}-2 X g(Y)\right]=E\left[E\left[X^{2} \mid Y\right]-g\left(Y^{2}\right)\right]=E[\operatorname{Var}(X \mid Y)] Var(ϵ)=E[Xg(Y)]2=E[X2+g(Y)22Xg(Y)]=E[E[X2Y]g(Y2)]=E[Var(XY)]
得证

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值