线性代数 行列式复习

1.n阶行列式

∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j = 1 n a 1 j A 1 j |A|=\begin{vmatrix} a_{11} &a_{12} &\cdots &a_{1n} \\ a_{21} &a_{22} &\cdots &a_{2n} \\ \vdots &\vdots &\vdots &\vdots \\ a_{n1} &a_{n2} &\cdots & a_{nn} \end{vmatrix}=\sum_{j=1}^{n}a_{1j}A_{1j} A=a11a21an1a12a22an2a1na2nann=j=1na1jA1j
A i j A_{ij} Aij称为 a i j a_{ij} aij的代数余子式。
另外还有行列式的第二定义,即用逆序数定义完成,这里就不过多赘述!

2.行列式的性质

1. ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda ^{n}|A| λA=λnA
2. ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ a i 1 + b i 1 a i 2 + b i 2 ⋯ a i n + b i n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix} a_{11}&a_{12} &\cdots & a_{1n}\\ \vdots & \vdots & \vdots &\vdots \\ a_{i1}+b_{i1}&a_{i2}+b_{i2} &\cdots &a_{in}+b_{in} \\ \vdots & \vdots &\vdots &\vdots \\ a_{n1}& a_{n2}&\cdots & a_{nn} \end{vmatrix} a11ai1+bi1an1a12ai2+bi2an2a1nain+binann

= ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ b i 1 b i 2 ⋯ b i n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ =\begin{vmatrix} a_{11}&a_{12} &\cdots & a_{1n}\\ \vdots & \vdots & \vdots &\vdots \\ a_{i1}&a_{i2}&\cdots &a_{in}\\ \vdots & \vdots &\vdots &\vdots \\ a_{n1}& a_{n2}&\cdots & a_{nn} \end{vmatrix}+ \begin{vmatrix} a_{11}&a_{12} &\cdots & a_{1n}\\ \vdots & \vdots & \vdots &\vdots \\ b_{i1}&b_{i2} &\cdots &b_{in} \\ \vdots & \vdots &\vdots &\vdots \\ a_{n1}& a_{n2}&\cdots & a_{nn} \end{vmatrix} =a11ai1an1a12ai2an2a1nainann+a11bi1an1a12bi2an2a1nbinann
3.互换行列式的两行,行列式变号
4.行列式中如果有两行元素成比例,则行列式等于零
5. ∣ A ∣ = ∣ A T ∣ |A|=|A^{T}| A=AT
6. ∣ A 1 A 2 ⋯ A n ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A n ∣ |A_{1}A_{2}\cdots A_{n}|=|A_{1}||A_{2}|\cdots |A_{n}| A1A2An=A1A2An

3.拉普拉斯展开式

线性代数有句话说的好,我们计算行列式时,不是在拉普拉斯,就是在拉普拉斯的路上,可见拉普拉斯的重要性!
A A A B B B分别是 m m m阶和 n n n阶矩阵

∣ A O O B ∣ \begin{vmatrix} A & O\\ O&B \end{vmatrix} AOOB= ∣ A ∗ O B ∣ \begin{vmatrix} A&* \\ O& B \end{vmatrix} AOB= ∣ A O ∗ B ∣ \begin{vmatrix} A&O\\ *&B \end{vmatrix} AOB= ∣ A ∣ ∣ B ∣ |A||B| AB

∣ O A B O ∣ \begin{vmatrix} O & A\\ B& O \end{vmatrix} OBAO= ∣ O A B ∗ ∣ \begin{vmatrix} O & A\\ B & * \end{vmatrix} OBA= ∣ ∗ A B O ∣ \begin{vmatrix} *&A \\ B&O \end{vmatrix} BAO= ( − 1 ) m n ∣ A ∣ ∣ B ∣ (-1)^{mn}|A||B| (1)mnAB
使用拉普拉斯计算行列式可以大规模的降维,大规模的简化计算

4.范德蒙行列式

V n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ⩽ i ≤ j ⩽ n ( a j − a i ) V_{n}=\begin{vmatrix} 1&1 &\cdots & 1\\ x_{1}&x_{2} &\cdots & x_{n}\\ x_{1}^{2}& x_{2}^{2} & \cdots & x_{n}^{2}\\ \vdots &\vdots & \vdots &\vdots \\ x_{1}^{n-1}& x_{2}^{n-1} &\cdots & x_{n}^{n-1} \end{vmatrix}=\prod_{1\leqslant i\leq j\leqslant n}(a_{j}-a_{i}) Vn=1x1x12x1n11x2x22x2n11xnxn2xnn1=1ijn(ajai)
范德蒙行列式的结论可以直接记住。
注意:
范德蒙行列式是按行排列,且最后一行的 n − 1 n-1 n1次幂。

5.克拉默法则

当含有 n n n个未知数的非齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=b_{1}\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=b_{2}\\ \cdots \cdots \\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots +a_{nn}x_{n}=b_{n} \end{matrix}\right. a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn
由它的系数组成的 n n n阶行列式
D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\begin{vmatrix} a_{11} &a_{12} & \cdots &a_{1n} \\ a_{21} &a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & \vdots &\vdots \\ a_{n1} &a_{n2} & \cdots &a_{nn} \end{vmatrix} D=a11a21an1a12a22an2a1na2nann
若方程组的系数行列式 D ≠ 0 D\neq 0 D=0,则它有唯一解。
x 1 = D 1 D , x 2 = D 2 D , ⋯   , x n = D n D x_{1}=\frac{D_{1}}{D},x_{2}=\frac{D_{2}}{D},\cdots ,x_{n}=\frac{D_{n}}{D} x1=DD1,x2=DD2,,xn=DDn
注意:
克拉默法则求解比较复杂,一般用克拉默法则求单个解

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

散一世繁华,颠半世琉璃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值