线性代数学习笔记(二)——n阶行列式

通过分析三阶行列式每项的符号与列标排列、逆序数和奇偶性的关系,推广得到n阶行列式的第一种定义(按行展开)。然后分析了几种特殊的行列式:下三角行列式、上三角行列式、对角型行列式以及对应三种“山寨版”的行列式,并讨论了这些特殊行列式的值和每个展开项的符号。最后给出了行列式的第二种定义(按列展开)和第三种定义(即不按行,也不按列展开),并分析了此种定义下行列式的值和每个展开项的符号。

1 三阶行列式回顾

在上一篇博客中提到三阶行列式和对应值如下所示:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\\ \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32} a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32

可以看到所有6项(3项正数和3项负数)中,行标的排列均为: 123 123 123,即行标取标准排列;而列标的排列分别为: 123 、 231 、 312 、 321 、 213 、 132 123、231、312、321、213、132 123231312321213132,即列标取3级排列的所有可能( 3 ! 3! 3!)。每项值的符号与对应列标排列逆序数的奇偶性的关系如下表所示:

序号 每项的值 列标的排列 逆序数 奇偶性 符号
1 a 11 a 22 a 33 a_{11}a_{22}a_{33} a11a22a33 123 0
2 a 12 a 23 a 31 a_{12}a_{23}a_{31} a12a23a31 231 2
3 a 13 a 21 a 32 a_{13}a_{21}a_{32} a13a21a32 312 2
4 − a 13 a 22 a 31 -a_{13}a_{22}a_{31} a13a22a31 321 3
5 − a 12 a 21 a 33 -a_{12}a_{21}a_{33} a12a21a33 213 1
6 − a 11 a 23 a 32 -a_{11}a_{23}a_{32} a11a23a32 132 1

从上表可以看出,行列式的值为:取不同行不同列取出3个元素相乘,符号由列标的奇偶性决定(奇排列对应负号,偶排列对应正号)。

2 n阶行列式

由3阶行列式可以直接推广到n阶行列式:
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) N ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \begin{vmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{vmatrix}=\sum_{j_1j_2{\cdots}j_n}(-1)^{N(j_1j_2{\cdots}j_n)}a_{1j_1}a_{2j_2}{\cdots}a_{nj_n} a11a21an1a12a22an2a1na2nann =j1j2jn(1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值