通过分析三阶行列式每项的符号与列标排列、逆序数和奇偶性的关系,推广得到n阶行列式的第一种定义(按行展开)。然后分析了几种特殊的行列式:下三角行列式、上三角行列式、对角型行列式以及对应三种“山寨版”的行列式,并讨论了这些特殊行列式的值和每个展开项的符号。最后给出了行列式的第二种定义(按列展开)和第三种定义(即不按行,也不按列展开),并分析了此种定义下行列式的值和每个展开项的符号。
1 三阶行列式回顾
在上一篇博客中提到三阶行列式和对应值如下所示:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\\ \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}
a11a21a31a12a22a32a13a23a33
=a11a22a33+a12a23a31+a13a21a32−a13a22a31−a12a21a33−a11a23a32
可以看到所有6项(3项正数和3项负数)中,行标的排列均为: 123 123 123,即行标取标准排列;而列标的排列分别为: 123 、 231 、 312 、 321 、 213 、 132 123、231、312、321、213、132 123、231、312、321、213、132,即列标取3级排列的所有可能( 3 ! 3! 3!)。每项值的符号与对应列标排列逆序数的奇偶性的关系如下表所示:
序号 | 每项的值 | 列标的排列 | 逆序数 | 奇偶性 | 符号 |
---|---|---|---|---|---|
1 | a 11 a 22 a 33 a_{11}a_{22}a_{33} a11a22a33 | 123 | 0 | 偶 | 正 |
2 | a 12 a 23 a 31 a_{12}a_{23}a_{31} a12a23a31 | 231 | 2 | 偶 | 正 |
3 | a 13 a 21 a 32 a_{13}a_{21}a_{32} a13a21a32 | 312 | 2 | 偶 | 正 |
4 | − a 13 a 22 a 31 -a_{13}a_{22}a_{31} −a13a22a31 | 321 | 3 | 奇 | 负 |
5 | − a 12 a 21 a 33 -a_{12}a_{21}a_{33} −a12a21a33 | 213 | 1 | 奇 | 负 |
6 | − a 11 a 23 a 32 -a_{11}a_{23}a_{32} −a11a23a32 | 132 | 1 | 奇 | 负 |
从上表可以看出,行列式的值为:取不同行不同列取出3个元素相乘,符号由列标的奇偶性决定(奇排列对应负号,偶排列对应正号)。
2 n阶行列式
由3阶行列式可以直接推广到n阶行列式:
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) N ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \begin{vmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{vmatrix}=\sum_{j_1j_2{\cdots}j_n}(-1)^{N(j_1j_2{\cdots}j_n)}a_{1j_1}a_{2j_2}{\cdots}a_{nj_n}
a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
=∑j1j2⋯jn(−1