数学物理方程学习笔记2

数学物理方程学习笔记2

1.弦振动方程

1.4 半无界问题

问题:
{ □ u = f , 0 < x < + ∞ , t > 0 u ∣ t = 0 = φ ( x ) , 0 < x < + ∞ u t ∣ t = 0 = ψ ( x ) , 0 < x < + ∞ u ∣ x = 0 = g ( t ) , t > 0 o r u x ∣ x = 0 = g ( t ) \begin{cases} \Box u=f ,0<x<+\infty,t>0\\ u|_{t=0}=\varphi(x),0<x<+\infty\\ u_{t}|_{t=0}=\psi(x),0<x<+\infty\\ u|_{x=0}=g(t),t>0 \quad or \quad u_x|_{x=0}= g(t) \end{cases} u=f,0<x<+,t>0ut=0=φ(x),0<x<+utt=0=ψ(x),0<x<+ux=0=g(t),t>0oruxx=0=g(t)
方法:

开拓法

情况分类:

对于第一边界条件

(1) g ( t ) = 0 g(t)=0 g(t)=0–奇延拓

(2) g ( t ) ≠ 0 g(t)\neq0 g(t)=0–先边界齐次化,再奇延拓

v = u ( x , t ) − w ( x , t ) , v=u(x,t)-w(x,t), v=u(x,t)w(x,t),使$ v|_{x=0}=0,t>0 , 不 妨 令 ,不妨令 w(x,t)=g(t)$

对于第二边界条件

(1) g ( t ) = 0 g(t)=0 g(t)=0–偶延拓

(2) g ( t ) ≠ 0 g(t)\neq0 g(t)=0–先边界齐次化,再偶延拓

v = u ( x , t ) − w ( x , t ) , v=u(x,t)-w(x,t), v=u(x,t)w(x,t),使$ v_x|_{x=0}=g(t)-w_x=0,t>0 , 不 妨 令 ,不妨令 v=u-xg(t)$

解的性质:

(1)形式解+?=真正解

?:光滑性要求 u ∈ C 2 , φ ∈ C 2 , ψ ∈ C , g ∈ C 2 u\in C^2,\varphi \in C^2,\psi \in C,g \in C^2 uC2,φC2,ψC,gC2

相容性条件( φ ( 0 ) = g ( 0 ) , ψ ( 0 ) = g ′ ( 0 ) , g ′ ′ ( 0 ) − a 2 φ ′ ′ ( 0 ) = f ( 0 , 0 ) \varphi(0)=g(0),\psi(0)=g'(0),g''(0)-a^2\varphi''(0)=f(0,0) φ(0)=g(0),ψ(0)=g(0),g(0)a2φ(0)=f(0,0)

1.5混合问题

问题:

(1)一维两端固定
{ u t t − a 2 u x x = 0 , 0 < x < l , t > 0 u ( x , 0 ) = φ ( x ) , 0 < x < l u t ( x , 0 ) = ψ ( x ) , 0 < x < l u ( 0 , t ) = u ( l , t ) = 0 , t > 0 \begin{cases} u_{tt}-a^2u_{xx}=0,\quad0<x<l,t>0\\ u(x,0)=\varphi(x),\quad0<x<l\\ u_t(x,0)=\psi(x),\quad0<x<l\\ u(0,t)=u(l,t)=0,\quad t>0 \end{cases} utta2uxx=0,0<x<l,t>0u(x,0)=φ(x),0<x<lut(x,0)=ψ(x),0<x<lu(0,t)=u(l,t)=0,t>0
基本概念:

(1)特征值:使 X ′ ′ ( x ) + λ X ( x ) = 0 T ′ ′ ( t ) + a 2 λ T ( t ) = 0 X''(x)+\lambda X(x)=0\quad T''(t)+a^2\lambda T(t)=0 X(x)+λX(x)=0T(t)+a2λT(t)=0具有非零解的 λ \lambda λ

(2)特征函数:相应的非零解

(3)Sturm-Liouville问题:求特征值和特征函数的问题

Sturm-Liouville问题的重要性质:

(1)所有的特征值都是正数

(2)不同特征值对应的特征函数正交

(3)任意函数可以按特征函数系展开

方法:

(分离变量法)

u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u(x,t)=X(x)T(t),代入方程得到
第 一 步 − − 得 到 X ( x ) 适 合 的 S − L 问 题 和 T ( t ) 适 合 的 常 微 分 问 题 X ( x ) T ′ ′ ( t ) − a 2 T ( t ) X ′ ′ ( x ) = 0 ⟹ X ′ ′ ( x ) X ( x ) = T ′ ′ ( t ) a 2 T ( t ) = Δ − λ ( λ > 0 ) 第 二 步 − − 解 S − L 问 题 , 求 出 特 征 值 和 特 征 函 数 及 T ( t ) 的 表 达 式 { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 X ( x ) = c 1 s i n λ x + c 2 c o s λ x X ( 0 ) = c 2 = 0 , 则 c 1 ≠ 0 X ( l ) = c 1 s i n λ l = 0 , 则 s i n λ l = 0 , λ = ( n π l ) 2 , n = 1 , 2 , ⋯ X n ( x ) = s i n n π l x T ′ ′ ( t ) + a 2 λ T ( t ) = 0 T n ( t ) = A n s i n a n π l t + B n c o s a n π l t 第 三 步 − − 利 用 初 值 待 定 常 数 u ( x , t ) = ∑ i = 1 n ( A n s i n a n π l t + B n c o s a n π l t ) s i n n π l x u ( x , 0 ) = ∑ i = 1 n B n s i n n π l x = φ ( x ) B n = ∫ 0 l φ ( x ) s i n n π l x d x ∫ 0 l s i n 2 n π l x d x = 2 l ∫ 0 l φ ( x ) s i n n π l x d x 同 理 : A n = 2 a n π ∫ 0 l ψ ( x ) s i n n π l x d x 第一步--得到X(x)适合的S-L问题和T(t)适合的常微分问题\\ X(x)T''(t)-a^2T(t)X''(x)=0\\ \Longrightarrow\frac{X''(x)}{X(x)}=\frac{T''(t)}{a^2T(t)}\stackrel{\Delta}=-\lambda(\lambda>0)\\ 第二步--解S-L问题,求出特征值和特征函数及T(t)的表达式\\ \begin{cases} X''(x)+\lambda X(x)=0\\ X(0)=X(l)=0 \end{cases}\\ X(x)=c_1sin\sqrt{\lambda}x+c_2cos\sqrt{\lambda}x\\ X(0)=c_2=0,则c_1\neq0\\ X(l)=c_1sin\sqrt{\lambda}l=0,则sin\sqrt{\lambda}l=0,\lambda = (\frac{n\pi}{l})^2,n=1,2,\cdots\\ X_n(x)=sin\frac{n\pi}{l}x\\ T''(t)+a^2\lambda T(t)=0\\ T_n(t)=A_nsin\frac{an\pi}{l}t+B_ncos\frac{an\pi}{l}t\\ 第三步--利用初值待定常数\\ u(x,t)=\sum_{i=1}^{n}(A_nsin\frac{an\pi}{l}t+B_ncos\frac{an\pi}{l}t)sin\frac{n\pi}{l}x\\ u(x,0)=\sum_{i=1}^{n}B_nsin\frac{n\pi}{l}x=\varphi(x)\\ B_n=\frac{\int_{0}^{l}\varphi(x)sin\frac{n\pi}{l}xdx}{\int_{0}^{l}sin^2\frac{n\pi}{l}xdx}=\frac{2}{l}\int_{0}^{l}\varphi(x)sin\frac{n\pi}{l}xdx\\ 同理:\\ A_n=\frac{2}{an\pi}\int_{0}^{l}\psi(x)sin\frac{n\pi}{l}xdx\\ X(x)SLT(t)X(x)T(t)a2T(t)X(x)=0X(x)X(x)=a2T(t)T(t)=Δλ(λ>0)SLT(t){X(x)+λX(x)=0X(0)=X(l)=0X(x)=c1sinλ x+c2cosλ xX(0)=c2=0,c1=0X(l)=c1sinλ l=0,sinλ l=0,λ=(lnπ)2,n=1,2,Xn(x)=sinlnπxT(t)+a2λT(t)=0Tn(t)=Ansinlanπt+Bncoslanπtu(x,t)=i=1n(Ansinlanπt+Bncoslanπt)sinlnπxu(x,0)=i=1nBnsinlnπx=φ(x)Bn=0lsin2lnπxdx0lφ(x)sinlnπxdx=l20lφ(x)sinlnπxdxAn=anπ20lψ(x)sinlnπxdx
解的性质:

(1)形式解+?=真正解

?:光滑性要求 φ ∈ C 3 , ψ ∈ C 2 \varphi \in C^3,\psi \in C^ 2 φC3,ψC2

相容性条件( φ ( 0 ) = φ ( l ) = φ ′ ′ ( 0 ) = φ ′ ′ ( l ) = ψ ( 0 ) = ψ ( l ) = 0 \varphi(0)=\varphi(l)=\varphi''(0)=\varphi''(l)=\psi(0)=\psi(l)=0 φ(0)=φ(l)=φ(0)=φ(l)=ψ(0)=ψ(l)=0

(2)解的估计

能量不等式:
∫ 0 l ( u t 2 + a 2 u x 2 ) d x ≤ M [ ∫ 0 l ( ψ 2 + a 2 φ x 2 ) d x + ∬ Q T f 2 d x d t ] \int_0^{l}(u_t^2+a^2u_x^2)dx\leq M[\int_0^l(\psi^2+a^2\varphi_x^2)dx+\iint_{Q_T} f^2dxdt] 0l(ut2+a2ux2)dxM[0l(ψ2+a2φx2)dx+QTf2dxdt]
∬ Q T ( u t 2 + a 2 u x 2 ) d x d t ≤ M [ ∫ 0 l ( ψ 2 + a 2 φ x 2 ) d x + ∬ Q T f 2 d x d t ] \iint_{Q_T}(u_t^2+a^2u_x^2)dxdt\leq M[\int_0^l(\psi^2+a^2\varphi_x^2)dx+\iint_{Q_T} f^2dxdt] QT(ut2+a2ux2)dxdtM[0l(ψ2+a2φx2)dx+QTf2dxdt]
Q T = ( 0 , l ) × ( 0 , T ) Q_T=(0,l)\times(0,T) QT=(0,l)×(0,T)

修改后的能量不等式:

∬ Q T ( u 2 + u t 2 + a 2 u x 2 ) d x d t ≤ M [ ∫ 0 l ( φ 2 + ψ 2 + a 2 φ x 2 ) d x + ∬ Q T f 2 d x d t ] \iint_{Q_T}(u^2+u_t^2+a^2u_x^2)dxdt\leq M[\int_0^l(\varphi^2+\psi^2+a^2\varphi_x^2)dx+\iint_{Q_T} f^2dxdt]\\ QT(u2+ut2+a2ux2)dxdtM[0l(φ2+ψ2+a2φx2)dx+QTf2dxdt]

(3)唯一性

u 1 , u 2 u_1,u_2 u1,u2是混合问题的解,记 w = u 1 − u 2 w=u_1-u_2 w=u1u2 w w w满足:
□ w = □ u 1 − □ u 2 = 0 w ∣ t = 0 = 0 w t ∣ t = 0 = 0 w ∣ x = 0 = 0 \Box w=\Box u_1-\Box u_2=0\\ w|_{t=0}=0\\ w_{t}|_{t=0}=0\\ w|_{x=0}=0 w=u1u2=0wt=0=0wtt=0=0wx=0=0
根据能量不等式有 ∬ Q T ( w t 2 + a 2 w x 2 ) d x d t ≤ 0 \iint_{Q_T}(w_t^2+a^2w_x^2)dxdt\leq 0 QT(wt2+a2wx2)dxdt0,则
w t = 0 w x = 0 w_t=0\\ w_x=0\\ wt=0wx=0
w = C = 0 ( t = 0 ) , u 1 = u 2 w=C=0(t=0),u_1=u_2 w=C=0(t=0),u1=u2

(4)连续依赖性
{ □ u 1 = f 1 u 1 ∣ t = 0 = φ 1 u 1 t ∣ t = 0 = ψ 1 u 1 ∣ x = 0 = g 1 ( t ) { □ u 2 = f 2 u 2 ∣ t = 0 = φ 2 u 2 t ∣ t = 0 = ψ 2 u 2 ∣ x = 0 = g 2 ( t ) \begin{cases} \Box u_1=f_1\\ u_1|_{t=0}=\varphi_1\\ u_1{_t}|_{t=0}=\psi_1\\ u_1|_{x=0}=g_1(t)\\ \end{cases}\\ \begin{cases} \Box u_2=f_2\\ u_2|_{t=0}=\varphi_2\\ u_2{_t}|_{t=0}=\psi_2\\ u_2|_{x=0}=g_2(t) \end{cases}\\ u1=f1u1t=0=φ1u1tt=0=ψ1u1x=0=g1(t)u2=f2u2t=0=φ2u2tt=0=ψ2u2x=0=g2(t)
w = u 1 − u 2 w=u_1-u_2 w=u1u2,根据修改后的能量不等式有 ∬ Q T ( w 2 + w t 2 + a 2 w x 2 ) d x d t ≤ ϵ \iint_{Q_T}(w^2+w_t^2+a^2w_x^2)dxdt\leq\epsilon QT(w2+wt2+a2wx2)dxdtϵ

问题:

(2)一维边界不为0
{ u t t − a 2 u x x = 0 , 0 < x < l , t > 0 u ( x , 0 ) = φ ( x ) , 0 < x < l u t ( x , 0 ) = ψ ( x ) , 0 < x < l u ( 0 , t ) = g 1 ( t ) , u ( l , t ) = g 2 ( t ) , t > 0 \begin{cases} u_{tt}-a^2u_{xx}=0,\quad0<x<l,t>0\\ u(x,0)=\varphi(x),\quad0<x<l\\ u_t(x,0)=\psi(x),\quad0<x<l\\ u(0,t)=g_1(t),u(l,t)=g_2(t),\quad t>0 \end{cases} utta2uxx=0,0<x<l,t>0u(x,0)=φ(x),0<x<lut(x,0)=ψ(x),0<x<lu(0,t)=g1(t),u(l,t)=g2(t),t>0
方法:

边界齐次化–代换

v = u ( x , t ) − w ( x , t ) , v=u(x,t)-w(x,t), v=u(x,t)w(x,t),使$ v|{x=0}=v|{x=l}=0,t>0 , 不 妨 令 ,不妨令 w(x,t)=g_1(t)\frac{l-x}{l}+g_2(t)\frac{x}{l}$

问题:

(3)方程非齐次
{ u t t − a 2 u x x = f ( x , t ) , 0 < x < l , t > 0 u ( x , 0 ) = φ ( x ) , 0 < x < l u t ( x , 0 ) = ψ ( x ) , 0 < x < l u ( 0 , t ) = u ( l , t ) = 0 , t > 0 \begin{cases} u_{tt}-a^2u_{xx}=f(x,t),\quad0<x<l,t>0\\ u(x,0)=\varphi(x),\quad0<x<l\\ u_t(x,0)=\psi(x),\quad0<x<l\\ u(0,t)=u(l,t)=0,\quad t>0 \end{cases} utta2uxx=f(x,t),0<x<l,t>0u(x,0)=φ(x),0<x<lut(x,0)=ψ(x),0<x<lu(0,t)=u(l,t)=0,t>0
方法:

step1:用变量分离法求出对应的齐次方程的全部特征值 { ( n π l ) 2 } \{(\frac{n\pi}{l})^2\} {(lnπ)2}和特征函数系 { s i n n π l x } \{sin\frac{n\pi}{l}x\} {sinlnπx}

step2:把 φ ( x ) , ψ ( x ) , f ( x ) \varphi(x),\psi(x),f(x) φ(x),ψ(x),f(x)按照特征函数系展开
φ ( x ) = ∑ n = 1 ∞ φ n s i n n π l x ⟹ φ n = 2 l ∫ o l φ ( x ) s i n n π l x d x ψ ( x ) = ∑ n = 1 ∞ ψ n s i n n π l x ⟹ ψ n = 2 l ∫ o l ψ ( x ) s i n n π l x d x f ( x , t ) = ∑ n = 1 ∞ f n ( t ) s i n n π l x ⟹ f n ( t ) = 2 l ∫ o l f ( x , t ) s i n n π l x d x \varphi(x)=\sum_{n=1}^{\infty}\varphi_nsin\frac{n\pi}{l}x \Longrightarrow \varphi_n=\frac{2}{l}\int_o^l\varphi(x)sin\frac{n\pi}{l}xdx\\ \psi(x)=\sum_{n=1}^{\infty}\psi_nsin\frac{n\pi}{l}x \Longrightarrow \psi_n=\frac{2}{l}\int_o^l\psi(x)sin\frac{n\pi}{l}xdx\\ f(x,t)=\sum_{n=1}^{\infty}f_n(t)sin\frac{n\pi}{l}x \Longrightarrow f_n(t)=\frac{2}{l}\int_o^lf(x,t)sin\frac{n\pi}{l}xdx\\ φ(x)=n=1φnsinlnπxφn=l2olφ(x)sinlnπxdxψ(x)=n=1ψnsinlnπxψn=l2olψ(x)sinlnπxdxf(x,t)=n=1fn(t)sinlnπxfn(t)=l2olf(x,t)sinlnπxdx
step3:令 u ( x , t ) = ∑ n = 1 ∞ T n ( t ) s i n n π l x u(x,t)=\sum_{n=1}^{\infty}T_n(t)sin\frac{n\pi}{l}x u(x,t)=n=1Tn(t)sinlnπx代入方程中,得到
{ T n ′ ′ ( t ) + ( a n π l ) 2 T n ( t ) = f n ( t ) T n ( 0 ) = φ n T n ′ ( 0 ) = ψ n \begin{cases} T''_n(t)+(\frac{an\pi}{l})^2T_n(t)=f_n(t)\\ T_n(0)=\varphi_n\\ T_n'(0)=\psi_n\\ \end{cases} Tn(t)+(lanπ)2Tn(t)=fn(t)Tn(0)=φnTn(0)=ψn
step4:求解上述非齐次常微分方程
T n ( t ) = φ n c o s a n π l t + l a n π ψ n s i n a n π l t + l a n π ∫ 0 t f n ( τ ) s i n a n π l ( t − τ ) d τ T_n(t)=\varphi_ncos\frac{an\pi}{l}t+\frac{l}{an\pi}\psi_nsin\frac{an\pi}{l}t+\frac{l}{an\pi}\int_0^tf_n(\tau)sin\frac{an\pi}{l}(t-\tau)d\tau Tn(t)=φncoslanπt+anπlψnsinlanπt+anπl0tfn(τ)sinlanπ(tτ)dτ
问题:

(4)n=2

{ u t t − a 2 ( u x x + u y y ) = 0 , 0 < x < l , t > 0 u ∣ ϱ Ω × ( 0 , + ∞ ) = 0 u ∣ t = 0 = φ ( x , y ) , ( x , y ) ∈ Ω u t ∣ t = 0 = ψ ( x , y ) , ( x , y ) ∈ Ω \begin{cases} u_{tt}-a^2(u_{xx}+u_{yy})=0,\quad0<x<l,t>0\\ u|_{\varrho\Omega\times(0,+\infty)}=0\\ u|_{t=0}=\varphi(x,y),(x,y)\in \Omega\\ u_t|_{t=0}=\psi(x,y),(x,y)\in \Omega \end{cases} utta2(uxx+uyy)=0,0<x<l,t>0uϱΩ×(0,+)=0ut=0=φ(x,y),(x,y)Ωutt=0=ψ(x,y),(x,y)Ω
方法:

(分离变量法)

u ( x , t ) = W ( x , y ) T ( t ) u(x,t)=W(x,y)T(t) u(x,t)=W(x,y)T(t),代入方程得到
W ( x , y ) T ′ ′ ( t ) − a 2 T ( t ) Δ W ( x , y ) = 0 ⟹ Δ W W = T ′ ′ ( t ) a 2 T ( t ) = Δ − λ ( λ > 0 ) { Δ W + λ W = 0 W ∣ ϱ Ω × ( 0 , + ∞ ) = 0 得 到 特 征 值 { λ n } 和 特 征 函 数 系 { w n ( x , y ) } T ′ ′ ( t ) + a 2 λ T ( t ) = 0 T n ( t ) = A n s i n a λ n t + B n c o s a λ n t u ( x , y , t ) = ∑ i = 1 n ( A n s i n a λ n t + B n c o s a λ n t ) w n ( x , y ) W(x,y)T''(t)-a^2T(t)\Delta W(x,y)=0\\ \Longrightarrow\frac{\Delta W}{W}=\frac{T''(t)}{a^2T(t)}\stackrel{\Delta}=-\lambda(\lambda>0)\\ \begin{cases} \Delta W+\lambda W=0\\ W|_{\varrho\Omega\times(0,+\infty)}=0 \end{cases}\\ 得到特征值\{\lambda_n\}和特征函数系\{w_n(x,y)\}\\ T''(t)+a^2\lambda T(t)=0\\ T_n(t)=A_nsina\sqrt{\lambda_n}t+B_ncosa\sqrt{\lambda_n}t\\ u(x,y,t)=\sum_{i=1}^{n}(A_nsina\sqrt{\lambda_n}t+B_ncosa\sqrt{\lambda_n}t)w_n(x,y)\\ W(x,y)T(t)a2T(t)ΔW(x,y)=0WΔW=a2T(t)T(t)=Δλ(λ>0){ΔW+λW=0WϱΩ×(0,+)=0{λn}{wn(x,y)}T(t)+a2λT(t)=0Tn(t)=Ansinaλn t+Bncosaλn tu(x,y,t)=i=1n(Ansinaλn t+Bncosaλn t)wn(x,y)

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值