数学物理方程学习笔记6

数学物理方程学习笔记6

2.热传导方程

2.3广义函数


定义:

关于实验函数类/基本空间– C 0 ∞ ( a , b ) C_0^\infty(a,b) C0(a,b)的基本列,称为广义函数,记为 f / { f n } f/\{f_n\} f/{fn}.

其中基本列指 ∀ φ ( x ) ∈ C 0 ∞ ( a , b ) , lim ⁡ n → ∞ ∫ a b φ ( x ) f n ( x ) 存 在 \forall \varphi(x)\in C_0^\infty(a,b),\lim\limits_{n\rightarrow\infty}\int_{a}^{b}\varphi(x)f_n(x)存在 φ(x)C0(a,b),nlimabφ(x)fn(x)

举例理解:

函数 δ ( x ) = { 0 , x ≠ 0 ∞ , x = 0 , ∫ − ∞ + ∞ δ ( x ) d x = 1 \delta(x)=\begin{cases}0,x \neq0\\\infty,x=0 \end{cases},\int_{-\infty}^{+\infty}\delta(x)dx=1 δ(x)={0,x=0,x=0,+δ(x)dx=1,通常意义下不连续,不是一个“好函数”,

但是 ∀ φ ( x ) ∈ C 0 ∞ ( − ∞ , + ∞ ) , < δ , φ > = Δ ∫ − ∞ + ∞ δ ( x ) φ ( x ) d x = φ ( 0 ) \forall \varphi(x)\in C_0^\infty(-\infty,+\infty), <\delta,\varphi>\stackrel{\Delta}=\int_{-\infty}^{+\infty}\delta(x)\varphi(x)dx=\varphi(0) φ(x)C0(,+),<δ,φ>=Δ+δ(x)φ(x)dx=φ(0),称 δ ( x ) \delta(x) δ(x)基本空间$ C_0^\infty(-\infty,+\infty)$上的广义函数。

优良性质:

广义函数有任意次导数, < D k f , φ > = ( − 1 ) k < f , D k φ > <D^kf,\varphi>=(-1)^k<f,D^k\varphi> <Dkf,φ>=(1)k<f,Dkφ>

2.4混合问题的解

问题:
{ u t − a 2 u x x = f ( x , t ) , 0 < x < l , t > 0 u ( x , 0 ) = φ ( x ) , 0 < x < l u ( 0 , t ) = g 1 ( t ) , u ( l , t ) = g 2 ( t ) , t > 0 \begin{cases} u_t-a^2u_{xx}=f(x,t),0<x<l,t>0\\ u(x,0)=\varphi(x),0<x<l\\ u(0,t)=g_1(t),u(l,t)=g_2(t),t>0 \end{cases} uta2uxx=f(x,t),0<x<l,t>0u(x,0)=φ(x),0<x<lu(0,t)=g1(t),u(l,t)=g2(t),t>0
求解:

分离变量法
简 化 问 题 : ( 1 ) 边 界 其 次 化 v ( x , t ) = u ( x , t ) − g 1 ( t ) l − x l − g 2 ( t ) x l ( 2 ) 先 求 解 对 应 齐 次 方 程 的 全 部 特 征 值 和 特 征 函 数 转 化 问 题 : { u t − a 2 u x x = 0 , 0 < x < l , t > 0 u ( x , 0 ) = φ ( x ) , 0 < x < l u ( 0 , t ) = 0 , u ( l , t ) = 0 , t > 0 令 u ( x , t ) = X ( x ) T ( t ) , 代 入 方 程 中 得 到 : X ( x ) T ′ ( t ) − a 2 T ( t ) X ′ ′ ( x ) = 0 ⟹ X ′ ′ ( x ) X ( x ) = T ′ ( t ) a 2 T ( t ) = Δ − λ ( λ > 0 ) { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 X ( x ) = C 1 c o s λ t + C 2 s i n λ t λ n = n π l , n = 1 , 2 ⋯ 特 征 函 数 系 : { s i n n π l x } { u t − a 2 u x x = f ( x , t ) , 0 < x < l , t > 0 u ( x , 0 ) = φ ( x ) , 0 < x < l u ( 0 , t ) = 0 , u ( l , t ) = 0 , t > 0 f , φ 在 特 征 函 数 系 : { s i n n π l x } 下 展 开 φ ( x ) = ∑ n = 1 ∞ φ n s i n n π l x ⟹ φ n = 2 l ∫ o l φ ( x ) s i n n π l x d x f ( x , t ) = ∑ n = 1 ∞ f n ( t ) s i n n π l x ⟹ f n = 2 l ∫ o l f ( x , t ) s i n n π l x d x u ( x , t ) = ∑ n = 1 ∞ T n ( t ) s i n n π l x 代 入 方 程 { T n ′ ( t ) + ( a n π l ) 2 T n ( t ) = f n ( t ) T n ( 0 ) = φ ( n ) T n ( t ) = φ n e − ( a n π l ) 2 t + ∫ 0 t f n ( τ ) e − ( a n π l ) 2 ( t − τ ) d τ 简化问题:\\ (1)边界其次化\\ v(x,t)=u(x,t)-g_1(t)\frac{l-x}{l}-g_2(t)\frac{x}{l}\\ (2)先求解对应齐次方程的全部特征值和特征函数\\ \\ 转化问题:\\ \begin{cases} u_t-a^2u_{xx}=0,0<x<l,t>0\\ u(x,0)=\varphi(x),0<x<l\\ u(0,t)=0,u(l,t)=0,t>0 \end{cases}\\ 令u(x,t)=X(x)T(t),代入方程中得到:\\ X(x)T'(t)-a^2T(t)X''(x)=0\\ \Longrightarrow\frac{X''(x)}{X(x)}=\frac{T'(t)}{a^2T(t)}\stackrel{\Delta}=-\lambda(\lambda>0)\\ \begin{cases} X''(x)+\lambda X(x)=0\\ X(0)=X(l)=0 \end{cases}\\ X(x)=C_1cos\lambda t+C_2sin\lambda t\\ \lambda_n=\frac{n\pi}{l},n=1,2\cdots\\ 特征函数系:\{sin\frac{n\pi}{l}x\}\\ \\ \begin{cases} u_t-a^2u_{xx}=f(x,t),0<x<l,t>0\\ u(x,0)=\varphi(x),0<x<l\\ u(0,t)=0,u(l,t)=0,t>0 \end{cases}\\ f,\varphi 在特征函数系:\{sin\frac{n\pi}{l}x\}下展开\\ \varphi(x)=\sum_{n=1}^{\infty}\varphi_nsin\frac{n\pi}{l}x \Longrightarrow \varphi_n=\frac{2}{l}\int_o^l\varphi(x)sin\frac{n\pi}{l}xdx\\ f(x,t)=\sum_{n=1}^{\infty}f_n(t)sin\frac{n\pi}{l}x \Longrightarrow f_n=\frac{2}{l}\int_o^lf(x,t)sin\frac{n\pi}{l}xdx\\ u(x,t)=\sum_{n=1}^{\infty}T_n(t)sin\frac{n\pi}{l}x代入方程\\ \begin{cases} T_n'(t)+(\frac{an\pi}{l})^2T_n(t)=f_n(t)\\ T_n(0)=\varphi(n)\\ \end{cases}\\ T_n(t)=\varphi_ne^{-(\frac{an\pi}{l})^2t}+\int_0^tf_n(\tau)e^{-(\frac{an\pi}{l})^2(t-\tau)}d\tau (1)v(x,t)=u(x,t)g1(t)llxg2(t)lx(2)uta2uxx=0,0<x<l,t>0u(x,0)=φ(x),0<x<lu(0,t)=0,u(l,t)=0,t>0u(x,t)=X(x)T(t),X(x)T(t)a2T(t)X(x)=0X(x)X(x)=a2T(t)T(t)=Δλ(λ>0){X(x)+λX(x)=0X(0)=X(l)=0X(x)=C1cosλt+C2sinλtλn=lnπ,n=1,2:{sinlnπx}uta2uxx=f(x,t),0<x<l,t>0u(x,0)=φ(x),0<x<lu(0,t)=0,u(l,t)=0,t>0f,φ:{sinlnπx}φ(x)=n=1φnsinlnπxφn=l2olφ(x)sinlnπxdxf(x,t)=n=1fn(t)sinlnπxfn=l2olf(x,t)sinlnπxdxu(x,t)=n=1Tn(t)sinlnπx{Tn(t)+(lanπ)2Tn(t)=fn(t)Tn(0)=φ(n)Tn(t)=φne(lanπ)2t+0tfn(τ)e(lanπ)2(tτ)dτ
Green函数法:

了解Green函数的概念
Q = ( 0 , l ) × ( 0 , + ∞ ) , ∀ ( ξ , τ ) ∈ Q { u t − a 2 u x x = δ ( x − ξ , t − τ ) , 0 < x < l , t > 0 u ( x , 0 ) = 0 , 0 < x < l u ( 0 , t ) = u ( l , t ) = 0 , t > 0 Q=(0,l)\times(0,+\infty),\forall(\xi,\tau)\in Q\\ \begin{cases} u_t-a^2u_{xx}=\delta(x-\xi,t-\tau),0<x<l,t>0\\ u(x,0)=0,0<x<l\\ u(0,t)=u(l,t)=0,t>0 \end{cases} Q=(0,l)×(0,+),(ξ,τ)Quta2uxx=δ(xξ,tτ),0<x<l,t>0u(x,0)=0,0<x<lu(0,t)=u(l,t)=0,t>0
称在广义函数意义下满足上述方程的 u u u为Green函数,记为 G ( x , t ; ξ , τ ) G(x,t;\xi,\tau) G(x,t;ξ,τ)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值