数学物理方程学习笔记5

数学物理方程学习笔记5

2.热传导方程

2.2Cauchy问题的解

Cauchy问题:

n=1
{ u t − a 2 u x x = 0 , x ∈ R , t > 0 u ( x , 0 ) = φ ( x ) , x ∈ R \begin{cases} u_t-a^2u_{xx}=0,x \in R,t>0\\ u(x,0)=\varphi(x),x \in R \end{cases} {uta2uxx=0,xR,t>0u(x,0)=φ(x),xR
方法:

Flourier变换法
s t e p 1 : 对 方 程 和 初 始 条 件 关 于 x 进 行 F l o u r i e r 变 换 { u ^ t − a 2 ( i λ ) 2 u ^ = 0 u ^ ( λ , 0 ) = φ ^ ( λ ) P D E → O D E s t e p 2 : 求 解 O D E 方 程 u ^ = φ ^ ( λ ) e − a 2 λ 2 t s t e p 3 : 对 u ^ 进 行 反 演 若 g ^ ( λ ) = e − a 2 λ 2 t , 此 时 u ^ = φ ^ ( λ ) g ^ ( λ ) 根 据 卷 积 的 性 质 : ( φ ∗ g ) ∧ = 2 π φ ^ g ^ u = ( φ ^ ( λ ) g ^ ( λ ) ) ∨ = 1 2 π φ ∗ g s t e p 4 : 求 g , 使 g ^ ( λ ) = e − a 2 λ 2 t 根 据 之 前 的 结 论 : ( e − A x 2 ) ∧ = 1 2 A e − λ 2 4 A 令 A = 1 4 a 2 t , g = 2 A e − A x 2 = 1 a 2 t e − x 2 4 a 2 t u = 1 2 π φ ∗ g = 1 2 π ∫ − ∞ + ∞ φ ( ξ ) 1 a 2 t e − ( x − ξ ) 2 4 a 2 t d ξ = 1 2 a π t ∫ − ∞ + ∞ φ ( ξ ) e − ( x − ξ ) 2 4 a 2 t d ξ step1:对方程和初始条件关于x进行Flourier变换\\ \begin{cases} \hat u_t-a^2(i\lambda)^2\hat u=0\\ \hat u(\lambda,0)=\hat\varphi(\lambda) \end{cases}\\ PDE\rightarrow ODE\\ \\ step2:求解ODE方程\\ \hat u=\hat \varphi(\lambda)e^{-a^2\lambda^2t}\\ \\ step3:对\hat u进行反演\\ 若\hat g(\lambda)=e^{-a^2\lambda^2t},此时\hat u=\hat \varphi(\lambda)\hat g(\lambda)\\ 根据卷积的性质:(\varphi *g)^\wedge=\sqrt{2\pi}\hat \varphi\hat g\\ u=(\hat \varphi(\lambda)\hat g(\lambda))^\vee=\frac{1}{\sqrt{2\pi}}\varphi *g\\ \\ step4:求g,使\hat g(\lambda)=e^{-a^2\lambda^2t}\\ 根据之前的结论:(e^{-Ax^2})^\wedge=\frac{1}{\sqrt{2A}}e^{-\frac{\lambda^2}{4A}}\\ 令A=\frac{1}{4a^2t},g=\sqrt{2A}e^{-Ax^2}=\frac{1}{a\sqrt{2t}}e^{-\frac{x^2}{4a^2t}}\\ \\ u=\frac{1}{\sqrt{2\pi}}\varphi *g=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}\varphi(\xi)\frac{1}{a\sqrt{2t}}e^{-\frac{(x-\xi)^2}{4a^2t}}d\xi=\frac{1}{2a\sqrt{\pi t}}\int_{-\infty}^{+\infty}\varphi(\xi)e^{-\frac{(x-\xi)^2}{4a^2t}}d\xi step1xFlourier{u^ta2(iλ)2u^=0u^(λ,0)=φ^(λ)PDEODEstep2:ODEu^=φ^(λ)ea2λ2tstep3:u^g^(λ)=ea2λ2t,u^=φ^(λ)g^(λ)(φg)=2π φ^g^u=(φ^(λ)g^(λ))=2π 1φgstep4:g,使g^(λ)=ea2λ2t(eAx2)=2A 1e4Aλ2A=4a2t1,g=2A eAx2=a2t 1e4a2tx2u=2π 1φg=2π 1+φ(ξ)a2t 1e4a2t(xξ)2dξ=2aπt 1+φ(ξ)e4a2t(xξ)2dξ
非齐次
{ u t − a 2 u x x = f ( x , t ) , x ∈ R , t > 0 u ( x , 0 ) = φ ( x ) , x ∈ R \begin{cases} u_t-a^2u_{xx}=f(x,t),x \in R,t>0\\ u(x,0)=\varphi(x),x \in R \end{cases} {uta2uxx=f(x,t),xR,t>0u(x,0)=φ(x),xR
使用常数变易法 φ ( ξ ) → f ( ξ , τ ) , t → t − τ , 并 对 τ 在 ( 0 , t ) 上 积 分 \varphi(\xi)\rightarrow f(\xi,\tau),t\rightarrow t-\tau,并对\tau 在(0,t)上积分 φ(ξ)f(ξ,τ),ttτ,τ(0,t)
u = 1 2 a π t ∫ − ∞ + ∞ φ ( ξ ) e − ( x − ξ ) 2 4 a 2 t d ξ + ∫ 0 t 1 2 a π ( t − τ ) ∫ − ∞ + ∞ f ( ξ , τ ) e − ( x − ξ ) 2 4 a 2 ( t − τ ) d ξ d t = 1 2 a π t ∫ − ∞ + ∞ φ ( ξ ) e − ( x − ξ ) 2 4 a 2 t d ξ + ∫ 0 t ∫ − ∞ + ∞ 1 2 a π ( t − τ ) f ( ξ , τ ) e − ( x − ξ ) 2 4 a 2 ( t − τ ) d ξ d t K ( x , t ) = { 1 2 a π t e − x 2 4 a 2 t , t > 0 0 , t ≤ 0 − − 基 本 解 u = ∫ − ∞ + ∞ φ ( ξ ) K ( x − ξ , t ) d ξ + ∫ 0 t d τ ∫ − ∞ + ∞ f ( ξ , τ ) K ( x − ξ , t − τ ) d ξ − − P o s s i o n 公 式 u=\frac{1}{2a\sqrt{\pi t}}\int_{-\infty}^{+\infty}\varphi(\xi)e^{-\frac{(x-\xi)^2}{4a^2t}}d\xi+\int_0^t\frac{1}{2a\sqrt{\pi (t-\tau)}}\int_{-\infty}^{+\infty}f(\xi,\tau)e^{-\frac{(x-\xi)^2}{4a^2(t-\tau)}}d\xi dt \\=\frac{1}{2a\sqrt{\pi t}}\int_{-\infty}^{+\infty}\varphi(\xi)e^{-\frac{(x-\xi)^2}{4a^2t}}d\xi+\int_0^t\int_{-\infty}^{+\infty}\frac{1}{2a\sqrt{\pi (t-\tau)}}f(\xi,\tau)e^{-\frac{(x-\xi)^2}{4a^2(t-\tau)}}d\xi dt\\ K(x,t)=\begin{cases} \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2t}},t>0\\ 0,t\leq 0\\ \end{cases}--基本解 \\ u=\int_{-\infty}^{+\infty}\varphi(\xi)K(x-\xi,t)d\xi+\int_0^td\tau\int_{-\infty}^{+\infty}f(\xi,\tau)K(x-\xi,t-\tau)d\xi--Possion公式 u=2aπt 1+φ(ξ)e4a2t(xξ)2dξ+0t2aπ(tτ) 1+f(ξ,τ)e4a2(tτ)(xξ)2dξdt=2aπt 1+φ(ξ)e4a2t(xξ)2dξ+0t+2aπ(tτ) 1f(ξ,τ)e4a2(tτ)(xξ)2dξdtK(x,t)={2aπt 1e4a2tx2,t>00,t0u=+φ(ξ)K(xξ,t)dξ+0tdτ+f(ξ,τ)K(xξ,tτ)dξPossion
巩固:用Flourier变换法求解弦振动方程

问题:
{ u t t − a 2 u x x = 0 , x ∈ R , t > 0 u ( x , 0 ) = φ ( x ) , x ∈ R u t ( x , 0 ) = ψ ( x ) , x ∈ R \begin{cases} u_{tt}-a^2u_{xx}=0,x\in R,t>0\\ u(x,0)=\varphi(x),x\in R \\ u_t(x,0)=\psi(x),x\in R \end{cases} utta2uxx=0,xR,t>0u(x,0)=φ(x),xRut(x,0)=ψ(x),xR
解答:
s t e p 1 : 对 方 程 和 初 始 条 件 关 于 x 进 行 F l o u r i e r 变 换 { u ^ t t − a 2 ( i λ ) 2 u ^ = 0 u ^ ( λ , 0 ) = φ ^ ( λ ) u ^ ∣ t ( λ , 0 ) = ψ ^ ( λ ) P D E → O D E s t e p 2 : 求 解 O D E 方 程 u ^ = c 1 e i a λ t + c 2 e − i a λ t c 1 + c 2 = φ ^ ( λ ) i a λ ( c 1 − c 2 ) = ψ ^ ( λ ) u ^ = 1 2 ( φ ^ ( λ ) − i ψ ^ ( λ ) a λ ) e i a λ t + 1 2 ( φ ^ ( λ ) + i ψ ^ ( λ ) a λ ) e − i a λ t s t e p 3 : 对 u ^ 进 行 反 演 ( φ ^ ( λ ) e i a λ t ) ∨ = 1 2 π lim ⁡ N → + ∞ ∫ − N + N φ ^ ( λ ) e i a λ t e i λ x d λ = 1 2 π lim ⁡ N → + ∞ ∫ − N + N φ ^ ( λ ) e i λ ( x + a t ) d λ = φ ( x + a t ) 同 理 : ( φ ^ ( λ ) e − i a λ t ) ∨ = φ ( x − a t ) [ ψ ^ ( λ ) λ ( e i a λ t − e − i a λ t ) ] ∨ = 1 2 π lim ⁡ N → + ∞ ∫ − N + N ψ ^ ( λ ) λ ( e i a λ t − e − i a λ t ) e i λ x d λ = 1 2 π lim ⁡ N → + ∞ ∫ − N + N ψ ^ ( λ ) λ ( e i λ ( x + a t ) − e − i λ ( x − a t ) ) d λ = 1 2 π lim ⁡ N → + ∞ ∫ − N + N ψ ^ ( λ ) λ e i λ ξ ∣ x − a t x + a t d λ = 1 2 π lim ⁡ N → + ∞ ∫ − N + N ψ ^ ( λ ) λ ∫ x − a t x + a t e i λ ξ i λ d ξ d λ = i ∫ x − a t x + a t 1 2 π lim ⁡ N → + ∞ ∫ − N + N ψ ^ ( λ ) e i λ ξ d λ d ξ = i ∫ x − a t x + a t ψ ( ξ ) d ξ u = 1 2 ( φ ( x + a t ) + φ ( x − a t ) ) + 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ step1:对方程和初始条件关于x进行Flourier变换\\ \begin{cases} \hat u_{tt}-a^2(i\lambda)^2\hat u= 0\\ \hat u(\lambda,0)=\hat\varphi(\lambda)\\ \hat u|_t(\lambda,0)=\hat\psi(\lambda)\\ \end{cases}\\ PDE\rightarrow ODE\\ \\ step2:求解ODE方程\\ \hat u=c_1e^{ia\lambda t}+c_2e^{-ia\lambda t}\\ c_1+c_2=\hat\varphi(\lambda)\\ ia\lambda (c_1-c_2)=\hat\psi(\lambda)\\ \hat u=\frac{1}{2}(\hat\varphi(\lambda)-i\frac{\hat\psi(\lambda)}{a\lambda})e^{ia\lambda t}+\frac{1}{2}(\hat\varphi(\lambda)+i\frac{\hat\psi(\lambda)}{a\lambda})e^{-ia\lambda t}\\ \\ step3:对\hat u进行反演\\ (\hat\varphi(\lambda)e^{ia\lambda t})^\vee=\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\hat\varphi(\lambda)e^{ia\lambda t}e^{i\lambda x}d\lambda\\ =\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\hat\varphi(\lambda)e^{i\lambda (x+at)}d\lambda=\varphi(x+at)\\ 同理:(\hat\varphi(\lambda)e^{-ia\lambda t})^\vee=\varphi(x-at)\\ [\frac{\hat\psi(\lambda)}{\lambda}(e^{ia\lambda t}-e^{-ia\lambda t})]^\vee=\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\frac{\hat\psi(\lambda)}{\lambda}(e^{ia\lambda t}-e^{-ia\lambda t})e^{i\lambda x}d\lambda\\ =\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\frac{\hat\psi(\lambda)}{\lambda}(e^{i\lambda (x+at)}-e^{-i\lambda (x-at)})d\lambda\\ =\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\frac{\hat\psi(\lambda)}{\lambda}e^{i\lambda\xi}|_{x-at}^{x+at}d\lambda\\ =\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\frac{\hat\psi(\lambda)}{\lambda}\int_{x-at}^{x+at}e^{i\lambda\xi}i\lambda d\xi d\lambda\\ =i\int_{x-at}^{x+at}\frac{1}{\sqrt{2\pi}}\lim\limits_{N\rightarrow+\infty}\int_{-N}^{+N}\hat\psi(\lambda)e^{i\lambda\xi}d\lambda d\xi \\ =i\int_{x-at}^{x+at}\psi(\xi)d\xi\\ \\ u=\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a}\int_{x-at}^{x+at}\psi(\xi)d\xi step1xFlourieru^tta2(iλ)2u^=0u^(λ,0)=φ^(λ)u^t(λ,0)=ψ^(λ)PDEODEstep2:ODEu^=c1eiaλt+c2eiaλtc1+c2=φ^(λ)iaλ(c1c2)=ψ^(λ)u^=21(φ^(λ)iaλψ^(λ))eiaλt+21(φ^(λ)+iaλψ^(λ))eiaλtstep3:u^(φ^(λ)eiaλt)=2π 1N+limN+Nφ^(λ)eiaλteiλxdλ=2π 1N+limN+Nφ^(λ)eiλ(x+at)dλ=φ(x+at)(φ^(λ)eiaλt)=φ(xat)[λψ^(λ)(eiaλteiaλt)]=2π 1N+limN+Nλψ^(λ)(eiaλteiaλt)eiλxdλ=2π 1N+limN+Nλψ^(λ)(eiλ(x+at)eiλ(xat))dλ=2π 1N+limN+Nλψ^(λ)eiλξxatx+atdλ=2π 1N+limN+Nλψ^(λ)xatx+ateiλξiλdξdλ=ixatx+at2π 1N+limN+Nψ^(λ)eiλξdλdξ=ixatx+atψ(ξ)dξu=21(φ(x+at)+φ(xat))+2a1xatx+atψ(ξ)dξ
解的性质:

基本解 K ( x , t ) K(x,t) K(x,t)
K ( x , t ) = { 1 2 a π t e − x 2 4 a 2 t , t > 0 0 , t ≤ 0 − − 基 本 解 K(x,t)=\begin{cases} \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2t}},t>0\\ 0,t\leq 0\\ \end{cases}--基本解 \\ K(x,t)={2aπt 1e4a2tx2,t>00,t0
(1) K ( x , t ) K(x,t) K(x,t) ( x , t ) (x,t) (x,t)的解析函数,即无穷次可微

(2)非负性: K ( x , t ) > 0 , ∀ t > 0 K(x,t)>0 ,\forall t>0 K(x,t)>0,t>0

(3) lim ⁡ ∣ x ∣ → + ∞ K ( x , t ) = 0 , lim ⁡ ∣ x ∣ → + ∞ ∂ m K ( x , t ) ∂ x m = 0 , ∀ t > 0 \lim\limits_{|x|\rightarrow +\infty}K(x,t)=0,\lim\limits_{|x|\rightarrow +\infty}\frac{\partial ^{m}K(x,t)}{\partial x^m}=0,\forall t>0 x+limK(x,t)=0,x+limxmmK(x,t)=0,t>0

(4) lim ⁡ t → 0 K ( x , t ) = 0 , ∀ δ > 0 , ∣ x ∣ < δ \lim\limits_{t\rightarrow 0}K(x,t)=0,\forall \delta>0,|x|<\delta t0limK(x,t)=0,δ>0,x<δ

(5)规范性: ∫ − ∞ + ∞ K ( x , t ) d x = 1 \int_{-\infty}^{+\infty}K(x,t)dx=1 +K(x,t)dx=1

Possion公式

u = ∫ − ∞ + ∞ φ ( ξ ) K ( x − ξ , t ) d ξ + ∫ 0 t d τ ∫ − ∞ + ∞ f ( ξ , τ ) K ( x − ξ , t − τ ) d ξ u=\int_{-\infty}^{+\infty}\varphi(\xi)K(x-\xi,t)d\xi+\int_0^td\tau\int_{-\infty}^{+\infty}f(\xi,\tau)K(x-\xi,t-\tau)d\xi u=+φ(ξ)K(xξ,t)dξ+0tdτ+f(ξ,τ)K(xξ,tτ)dξ

(1)有界性
φ ∈ C 1 ( R ) , f = 0 ⟶ u 是 C a u c h y 问 题 的 有 界 解 \varphi \in C^1(R),f=0\longrightarrow u是Cauchy问题的有界解 φC1(R),f=0uCauchy
证明:
设 ∣ φ ( x ) ∣ ≤ M ∣ u ∣ = ∣ ∫ − ∞ + ∞ φ ( ξ ) K ( x − ξ , t ) d ξ ∣ ≤ ∫ − ∞ + ∞ ∣ φ ( ξ ) ∣ ∣ K ( x − ξ , t ) ∣ d ξ ≤ M ∫ − ∞ + ∞ K ( x − ξ , t ) d ξ = M ⋅ 1 设|\varphi(x)|\leq M\\ |u|=|\int_{-\infty}^{+\infty}\varphi(\xi)K(x-\xi,t)d\xi|\leq\int_{-\infty}^{+\infty}|\varphi(\xi)||K(x-\xi,t)|d\xi\\ \leq M\int_{-\infty}^{+\infty}K(x-\xi,t)d\xi=M\cdot1\\ φ(x)Mu=+φ(ξ)K(xξ,t)dξ+φ(ξ)K(xξ,t)dξM+K(xξ,t)dξ=M1
(2)奇偶性、周期性

φ 是 x \varphi是x φx的奇/偶/周期函数,则 u 是 x u是x ux的奇/偶/周期函数。

(3)无限传播速度

∀ x ∈ ( x 0 − δ , x 0 + δ ) , φ ( x ) > 0 , 则 u ( x , t ) > 0 , t > 0 \forall x\in(x_0-\delta,x_0+\delta),\varphi(x)>0,则u(x,t)>0,t>0 x(x0δ,x0+δ),φ(x)>0,u(x,t)>0,t>0

解释:在顷刻之间,热量传递到杆上的任意一点,在 x 0 x_0 x0附近的点受到的影响较大,离 x 0 x_0 x0较远的点受到的影响较小。

对于弦振动方程来说,有“影响已达到的点”和“影响未达到的点”之分,这是两者的本质区别。

(4)无穷次可微

φ 连 续 有 解 , 则 u ( x , t ) ∈ C ∞ ( R + 2 ) \varphi 连续有解,则u(x,t)\in C^{\infty}(R_{+}^2) φu(x,t)C(R+2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值