第一章 随机事件与概率
一、 五大公式
(1)加法
P
(
A
+
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A + B) = P(A) + P(B) - P(AB)
P(A+B)=P(A)+P(B)−P(AB)
P
(
A
+
B
+
C
)
=
P
(
A
)
+
P
(
B
)
+
P
(
C
)
−
P
(
A
B
)
−
P
(
A
C
)
−
P
(
B
C
)
+
P
(
A
B
C
)
P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)
P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC)
(2)减法
P
(
A
−
B
)
=
P
(
A
B
ˉ
)
=
P
(
A
)
−
P
(
A
B
)
P(A - B) = P(A \bar B) = P(A) - P(AB)
P(A−B)=P(ABˉ)=P(A)−P(AB)
(3)乘法
P
(
A
B
)
=
P
(
B
∣
A
)
P
(
A
)
=
P
(
A
∣
B
)
P
(
B
)
P(AB) = P(B|A)P(A) = P(A|B)P(B)
P(AB)=P(B∣A)P(A)=P(A∣B)P(B)
(4)全概公式(重点)
A
1
.
.
.
A
n
A_1...A_n
A1...An构成一个完全事件组,
P
(
B
)
=
∑
i
=
1
n
P
(
B
∣
A
i
)
P
(
A
i
)
P(B)=\sum_{i = 1}^n P(B | A_i)P(A_i)
P(B)=∑i=1nP(B∣Ai)P(Ai)
举例来说
当考虑实际生活中的例子时,我们可以思考一个关于天气和交通状况的情景。
假设你每天通勤上班,而天气状况和交通状况是你的两个关注因素。我们定义两个事件:
事件 B₁:天气晴朗。
事件 B₂:天气多云。
另外,我们定义事件 A 为你准时到达办公室。我们想要计算事件 A 的概率。
已知以下信息:
P(B₁) = 0.6:天气晴朗的概率为 0.6。
P(B₂) = 0.4:天气多云的概率为 0.4。
P(A | B₁) = 0.9:在天气晴朗的条件下,你准时到达办公室的概率为 0.9。
P(A | B₂) = 0.7:在天气多云的条件下,你准时到达办公室的概率为 0.7。
现在,我们可以使用全概公式来计算事件 A(准时到达办公室)的概率:
P(A) = P(A | B₁) * P(B₁) + P(A | B₂) * P(B₂)
代入已知值:
P(A) = 0.9 * 0.6 + 0.7 * 0.4
= 0.54 + 0.28
= 0.82
因此,根据给定的条件,你准时到达办公室的概率为 0.82,或者说约为 82%。
(5)贝叶斯公式
相当于一个反向过程,当一个复杂问题B已经搞清楚的前提下,看受原来
A
i
A_i
Ai影响的概率
P
(
A
i
∣
B
)
=
P
(
A
i
B
)
P
(
B
)
=
P
(
B
∣
A
i
)
P
(
A
i
)
∑
i
=
1
n
P
(
B
∣
A
i
)
P
(
A
i
)
P(A_i | B) = \frac{P(A_i B)}{P(B)} = \frac{P(B | A_i)P(A_i)}{\sum_{i = 1}^n P(B | A_i)P(A_i)}
P(Ai∣B)=P(B)P(AiB)=∑i=1nP(B∣Ai)P(Ai)P(B∣Ai)P(Ai)
贝叶斯如何理解,详见什么是贝叶斯公式?
二、三大概型
1. 古典概型
2. 几何概型
3. 伯努利概型
(通常指n次独立重复试验)
P
(
A
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
K
(
k
=
0
,
1
,
2
,
.
.
.
,
n
)
P(A_k) = C_{n}^k p^k (1-p)^{n-K} (k = 0, 1, 2,...,n)
P(Ak)=Cnkpk(1−p)n−K(k=0,1,2,...,n)(对应二项概率公式)
主要确定n和p
三、条件概率与实践的独立性
- P ( A ) > 0 , P ( B ∣ A ) = P ( A B ) P ( A ) P(A) > 0, P(B | A)=\frac{P(AB)}{P(A)} P(A)>0,P(B∣A)=P(A)P(AB)
- 独立性
① 若 P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B),则称A,B相互独立
② 性质:如果相互独立,A拔或B拔都对这个公式无影响
③ 等价说法:(即A发不发生跟B没关系)
P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(B∣A)=P(B)
⇔ P ( B ∣ A ˉ ) = P ( B ) \Leftrightarrow P(B|\bar{A})=P(B) ⇔P(B∣Aˉ)=P(B)
⇔ P ( B ∣ A ) = P ( B ∣ A ˉ ) \Leftrightarrow P(B|A)=P(B|\bar{A}) ⇔P(B∣A)=P(B∣Aˉ)
⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB) = P(A)P(B) ⇔P(AB)=P(A)P(B)
④ (推广)三个事件独立性
a. 两两独立
b. 相互独立
关系:相互独立一定两两独立;但两两独立不一定相互独立
(未完待续)