概率论知识点总复习

第一章 随机事件与概率

一、 五大公式

(1)加法
P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A + B) = P(A) + P(B) - P(AB) P(A+B)=P(A)+P(B)P(AB)
P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

(2)减法
P ( A − B ) = P ( A B ˉ ) = P ( A ) − P ( A B ) P(A - B) = P(A \bar B) = P(A) - P(AB) P(AB)=P(ABˉ)=P(A)P(AB)

(3)乘法
P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ∣ B ) P ( B ) P(AB) = P(B|A)P(A) = P(A|B)P(B) P(AB)=P(BA)P(A)=P(AB)P(B)

(4)全概公式(重点)
A 1 . . . A n A_1...A_n A1...An构成一个完全事件组,
P ( B ) = ∑ i = 1 n P ( B ∣ A i ) P ( A i ) P(B)=\sum_{i = 1}^n P(B | A_i)P(A_i) P(B)=i=1nP(BAi)P(Ai)

举例来说
当考虑实际生活中的例子时,我们可以思考一个关于天气和交通状况的情景。
假设你每天通勤上班,而天气状况和交通状况是你的两个关注因素。我们定义两个事件:
事件 B₁:天气晴朗。
事件 B₂:天气多云。
另外,我们定义事件 A 为你准时到达办公室。我们想要计算事件 A 的概率。
已知以下信息:
P(B₁) = 0.6:天气晴朗的概率为 0.6。
P(B₂) = 0.4:天气多云的概率为 0.4。
P(A | B₁) = 0.9:在天气晴朗的条件下,你准时到达办公室的概率为 0.9。
P(A | B₂) = 0.7:在天气多云的条件下,你准时到达办公室的概率为 0.7。
现在,我们可以使用全概公式来计算事件 A(准时到达办公室)的概率:
P(A) = P(A | B₁) * P(B₁) + P(A | B₂) * P(B₂)
代入已知值:
P(A) = 0.9 * 0.6 + 0.7 * 0.4
= 0.54 + 0.28
= 0.82
因此,根据给定的条件,你准时到达办公室的概率为 0.82,或者说约为 82%。

(5)贝叶斯公式
相当于一个反向过程,当一个复杂问题B已经搞清楚的前提下,看受原来 A i A_i Ai影响的概率
P ( A i ∣ B ) = P ( A i B ) P ( B ) = P ( B ∣ A i ) P ( A i ) ∑ i = 1 n P ( B ∣ A i ) P ( A i ) P(A_i | B) = \frac{P(A_i B)}{P(B)} = \frac{P(B | A_i)P(A_i)}{\sum_{i = 1}^n P(B | A_i)P(A_i)} P(AiB)=P(B)P(AiB)=i=1nP(BAi)P(Ai)P(BAi)P(Ai)

贝叶斯如何理解,详见什么是贝叶斯公式?

二、三大概型

1. 古典概型

2. 几何概型

3. 伯努利概型

(通常指n次独立重复试验)
P ( A k ) = C n k p k ( 1 − p ) n − K ( k = 0 , 1 , 2 , . . . , n ) P(A_k) = C_{n}^k p^k (1-p)^{n-K} (k = 0, 1, 2,...,n) P(Ak)=Cnkpk(1p)nK(k=0,1,2,...,n)(对应二项概率公式)

主要确定n和p

三、条件概率与实践的独立性

  1. P ( A ) > 0 , P ( B ∣ A ) = P ( A B ) P ( A ) P(A) > 0, P(B | A)=\frac{P(AB)}{P(A)} P(A)>0,P(BA)=P(A)P(AB)
  2. 独立性
    ① 若 P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B),则称A,B相互独立
    ② 性质:如果相互独立,A拔或B拔都对这个公式无影响
    ③ 等价说法:(即A发不发生跟B没关系)
    P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(BA)=P(B)
    ⇔ P ( B ∣ A ˉ ) = P ( B ) \Leftrightarrow P(B|\bar{A})=P(B) P(BAˉ)=P(B)
    ⇔ P ( B ∣ A ) = P ( B ∣ A ˉ ) \Leftrightarrow P(B|A)=P(B|\bar{A}) P(BA)=P(BAˉ)
    ⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB) = P(A)P(B) P(AB)=P(A)P(B)
    ④ (推广)三个事件独立性
    a. 两两独立
    b. 相互独立
    关系:相互独立一定两两独立;但两两独立不一定相互独立

(未完待续)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TangerinePi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值