最近爆火的DeepSeek v3详细测评来了,现阶段国产AI最强?

名人说:自古逢秋悲寂寥,我言秋日胜春朝。 ——刘禹锡《秋词(其一)》
创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)

很高兴你打开了这篇博客,更多好用的AIGC,请关注我、订阅专栏《AI漫谈先知》,内容持续更新中…

背景:最近 DeepSeek 的模型以超低训练成本达到了比较高水准的模型能力。在网上引起了热议,包括某米创始人,以千万年薪邀请DeepSeek核心开发成员加入自己的AI团队,那么能力究竟如何,咱们一起来测试看看!

在这里插入图片描述

官网链接https://chat.deepseek.com/<

### DeepSeek的产品评测和技术评价 DeepSeek-V3在多项评测中的表现非常出色,尤其在知识类任务方面,如MMLU、MMLU-Pro、GPQA和SimpleQA等测试中,其成绩接近当前最优秀的模型Claude-3.5-Sonnet[^2]。这表明DeepSeek-V3具备强大的知识处理能力。 对于长文本测评DeepSeek-V3同样展现了卓越的能力,在DROP、FRAMES以及LongBench v2这些针对复杂语境理解的任务上,平均表现超过了其他竞争对手。这意味着该版本不仅擅长应对短小精悍的知识问答挑战,也能高效处理更复杂的自然语言理解和生成任务。 除了技术层面的成绩外,用户反馈也显示了积极的一面。例如,在热门小游戏站点的评測文章提到,借助于AI视角下的个性化推荐功能,玩家们能够更容易找到适合自己兴趣的小众佳作,并享受更多元化的娱乐体验[^3]。 ```python # 示例代码用于展示如何获取并分析用户反馈数据 import pandas as pd def analyze_user_feedback(feedback_data): df = pd.DataFrame(feedback_data) positive_reviews = df[df[&#39;sentiment&#39;] == &#39;positive&#39;] negative_reviews = df[df[&#39;sentiment&#39;] == &#39;negative&#39;] print(f"Positive reviews count: {len(positive_reviews)}") print(f"Negative reviews count: {len(negative_reviews)}") feedback_data = [ {&#39;review&#39;: "非常喜欢这款产品的智能推荐", &#39;sentiment&#39;: &#39;positive&#39;}, {&#39;review&#39;: "有时候加载速度有点慢", &#39;sentiment&#39;: &#39;negative&#39;} ] analyze_user_feedback(feedback_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code_流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值