DeepSeek各版本说明与优缺点分析
DeepSeek是最近人工智能领域备受瞩目的一个语言模型系列,其在不同版本的发布过程中,逐步加强了对多种任务的处理能力。本文将详细介绍DeepSeek的各版本,从版本的发布时间、特点、优势以及不足之处,为广大AI技术爱好者和开发者提供一份参考指南。
1. DeepSeek-V1:起步与编码强劲
DeepSeek-V1是DeepSeek的起步版本,这里不过多赘述,主要分析它的优缺点。
发布时间:
2024年1月
特点:
DeepSeek-V1是DeepSeek系列的首个版本,预训练于2TB的标记数据,主打自然语言处理和编码任务。它支持多种编程语言,具有强大的编码能力,适合程序开发人员和技术研究人员使用。
优势:
- 强大编码能力:支持多种编程语言,能够理解和生成代码,适合开发者进行自动化代码生成与调试。
- 高上下文窗口:支持高达128K标记的上下文窗口,能够处理较为复杂的文本理解和生成任务。
缺点:
- 多模态能力有限:该版本主要集中在文本处理上,缺少对图像、语音等多模态任务的支持。
- 推理能力较弱:尽管在自然语言处理和编码方面表现优异,但在复杂逻辑推理和深层次推理任务中,表现不如后续版本。
2. DeepSeek-V2系列:性能提升与开源生态
作为DeepSeek的早期版本,DeepSeek-V2的性能比DeepSeek-V1提升了太多,其差距和ChatGPT的首个版本和ChatGPT3.5相比一样。
发布时间:
2024年上半年
特点:
DeepSeek-V2系列搭载了2360亿个参数,是一个高效且强大的版本。它具有高性能和低训练成本的特点,支持完全开源和免费商用,极大地促进了AI应用的普及。
优势:
- 高效的性能与低成本:训练成本仅为GPT-4-Turbo的1%,大幅降低了开发门槛,适合科研和商业化应用。
- 开源与免费商用:与前一个版本相比,V2支持完全开源,并且用户可以自由进行商用,这使得DeepSeek的生态更加开放和多样化。
缺点:
- 推理速度较慢:尽管参数量庞大,但在推理速度方面,DeepSeek-V2相较于后续版本依然较慢,影响了实时任务的表现。
- 多模态能力局限:与V1类似,V2版本在处理非文本任务(如图像、音频)时的表现并不出色。
3. DeepSeek-V2.5系列:数学与网络搜索突破
发布时间:
2024年9月
下面是官方对于V2.5版本的更新日志:
DeepSeek 一直专注于模型的改进和优化。在 6 月份,我们对 DeepSeek-V2-Chat 进行了重大升级,用 Coder V2
的 Base 模型替换原有的 Chat 的 Base 模型,显著提升了其代码生成和推理能力,并发布了
DeepSeek-V2-Chat-0628 版本。紧接着,DeepSeek-Coder-V2 在原有 Base
模型的基础上,通过对齐优化,大大提升通用能力后推出了 DeepSeek-Coder-V2 0724 版本。最终,我们成功将 Chat 和
Coder 两个模型合并,推出了全新的DeepSeek-V2.5 版本。
可以看出官方在这次更新中融合了Chat和Coder两个模型,使得DeepSeek-V2.5能够辅助开发者处理更高难度的任务。
- Chat模型:专门为对话系统(聊天机器人)设计和优化,用于生成自然语言对话,能够理解上下文并生成连贯且有意义的回复,常见应用如聊天机器人、智能助手等。
- Coder模型:是一种基于深度学习技术,经过大量代码数据训练,能够理解、生成和处理代码的人工智能模型。
并且从官方发布的数据来看,V2.5在通用能力(创作、问答等)等问题中表现对比V2模型来说,有了显著得提升。
下面用一张图来对比一下DeepSeek - V2 和 DeepSeek - V2.5 两个版本模型分别与 ChatGPT4o - latest 和 ChatGPT4o mini的通用能力对比测试。