前言
本篇文章没有写到的专选(不限于计科),也欢迎上过其他课的同学在评论区分享,帮助其他同学避雷。
所有评价均为本人主观判断,每个人上课感觉都不一样。同一门课不同老师上课的形式,成绩占比也有可能不同,注意甄别。有些课程具体细节不太记得清了,所有言论仅供参考。对于专选其实都大差不差,除了个别比较雷的,基本上都是不会挂的。
所有课程推荐指数满分为五分,4/5的意思是得4分。
1、数据挖掘
- 上课老师:卢xg
- 总评:94
- 推荐指数:4/5
- 优点:上课比较水,作业有两次平时(好像是)的和一次期末大作业,平时的csdn已经有人发了,大作业直接gpt,运行结果也是乱跑的,最终总评分数还是很高
- 缺点:上课会随机提问顺便点到,老师口音听得很难受
2、社交网络分析
-
上课老师:林jx
-
总评:94
-
推荐指数:5/5
-
优点:上课很水,两次还是三次作业,期末是考试,但考的就是作业内容,上课也不会点名提问
-
缺点:偶尔随机点到(印象中一学期点了三四次),两次还是三次不到会警告还是直接挂
3、计算机图形学
- 上课老师:李rh
- 总评:100
- 推荐指数:3.5/5
- 优点:一学期好像就点了一次名,考核形式是三次作业(都发布在个人csdn博客了),时间都是一个月,还是比较充足的,而且大部分人的分都挺高的,老师人也挺好的,上课也不会点名提问
- 缺点:虽然我是满评,但这门课程是真得学习计算机图形学,也就是OpenGL的一些知识,否则配环境都得配很久,然后从入门到能渲染图形再到能做大型项目,得花比较多的时间去学。如果想混分的同学建议和大佬一起上课,因为最后一个大作业是小组完成,可以报大佬大腿。
4、云计算技术
- 上课老师:陈g
- 总评:95
- 推荐指数:4.5/5
- 优点:陈g老师估计是信息院风评最好的老师,上课也直接说觉得没必要可以不去上课(翘过几节,因为后面都听不懂),也是我见过最多人认真上课的专选。考核形式也是三次作业,不过Github上都能搜到往届学长学姐的,如果参与作业汇报且获奖的话老师还会斥巨资给学生奖励(请KFC和海底捞)
- 缺点:作业是小组形式完成,如果你是组长恭喜你,基本是一个人完成。作业都是运行在Linux上,然后几个项目无论运行还是调试都有很多bug,除非你对Linux比较熟。但好就好在往届学长学姐都发有源码,我直接狂抄
5、计算机视觉
- 上课老师:蔡mj
- 总评:80
- 推荐指数:3.5/5
- 优点:对于想学cv的同学这门课还是能学到点东西的,考核是四次考试,都是在课上考,且具体范围(在哪个ppt)都会提前说,可以针对复习。考试时不会直接gpt,虽然不一定跑的了,但至少有结果。
- 缺点:上课随机点名抽问问题顺便点到,三次不到好像直接挂(第一节课就说只要不是大四的话不会留情,直接挂科,因为还有一年时间重修,这也导致当时退课了十几个人)。虽然提前给出考试范围,但考试时还是不会写代码,网上也搜不到,只能gpt,运气好跑出结果分就高。
6、多传感器信息融合
- 上课老师:皮hl
- 总评:65
- 推荐指数:3/5
- 优点:第一节课直接说理解大四同学都要考研找工作,所以不去上课不扣分,去了的加分。学习通的作业还是比较简单的,期末大论文也可以gpt生成
- 缺点:说是去了不扣分,但实际成绩出来平时成绩1tm是0分,意思就是你一节课不去有一栏就是0分,总评就会很低,如果对分数不是很在意,那么这个课应该不会故意让你挂。但分真的低,不然能推荐4分。而且期末论文要5000字以上,很难写
7、自动驾驶与车联网
- 上课老师:秦yc
- 总评:92
- 推荐指数:4/5
- 优点:老师很水,还经常请假有别的老师代课。学习通作业直接gpt,期末论文字数格式都不限,也直接gpt,分数很高
- 缺点:上课的人很少,老师已经认得谁叫什么名字,基本每节课都会问一些问题,不过我一般厚脸皮直接说不会,老师也不会管
8、分布式数据管理
- 上课老师:胡yk
- 总评:77
- 推荐指数:4/5
- 优点:老师很好,还会一直探讨如何提高课堂质量,也理解大四同学要考研找工作,所以对于不到课的情况也理解。考核是两次作业+大作业
- 缺点:想得出来的缺点可能是总评分数比较低吧,毕竟作业都是gpt的
9、软件工程
- 上课老师:王ws
- 总评:没上过
- 推荐指数:4/5
- 优点:听舍友说的,老师挺水,作业也简单,期末考简单复习一下就行,总评也给的高
- 缺点:基本都带早八,期末还要考试