时间序列分析的相关方法与资料

时间序列分析基本步骤:
1.去趋势,去周期,随机项分析
2.偏相关与自相关系数的计算
3.模型定阶(AIC/BIC方法,在提出的一组模型中选择AIC/BIC最小的模型避免过拟合情况)
4.计算LB统计量与卡方统计量,若LB统计数值小于对应的卡方统计数值,则判断拟合误差为白噪声序列,模型通过
资料学习:
1.https://blog.csdn.net/qq_40527086/article/details/84033957?ops_request_misc=&request_id=&biz_id=&utm_medium=distribute.pc_search_result.none-task-blog-2~all~es_rank~default-21-84033957.pc_search_es_clickV2&utm_term=%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%88%86%E6%9E%90&spm=1018.2226.3001.4187
  时间序列分析(未使用差分方程)
  https://blog.csdn.net/qtlyx/article/details/53456480(使用差分方程)
2.https://blog.csdn.net/wmn7q/article/details/70174300
  时间序列分析的偏自相关系数
3.1)https://blog.csdn.net/weixin_39549734/article/details/81073240
     时间序列的ARIMA模型---用于判断数列的平稳性(去趋势)
  2)https://blog.csdn.net/wokaowokaowokao12345/article/details/60138308
     MATLAB对数据去趋势程序学习
4.模型选择之AIC和BIC
https://blog.csdn.net/weixin_30826095/article/details/98706056?ops_request_misc=&request_id=&biz_id=&utm_medium=distribute.pc_search_result.none-task-blog-2~all~es_rank~default-1-98706056.pc_search_es_clickV2&utm_term=AIC%E5%AE%9A%E9%98%B6%E6%96%B9%E6%B3%95&spm=1018.2226.3001.4187  
  似然函数的学习与计算
5.其他算法:
  时间序列算法:平滑法
  https://blog.csdn.net/weixin_42211626/article/details/103113698?ops_request_misc=&request_id=&biz_id=&utm_medium=distribute.pc_search_result.none-task-blog-2~all~es_rank~default-6-103113698.pc_search_es_clickV2&utm_term=%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98++%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4187
  滑动平均去趋势
  https://blog.csdn.net/xiaomeng29/article/details/93408059(有错误,自查)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值