数据分析实训-五数概况(Python实现)

题目

已知2015级物联网工程专业1班、2019级物联网工程专业1班《数据挖掘》课程期末成绩分别如下:
2015级物联网工程专业1班:82,92,77,62,70,36,80,100,74,64,63,56,72,78,68,65,72,80,58,92,79,92,65,56,85,73,61,71,42,89.

2019级物联网工程专业1班:
57,67,64,54,77,65,71,58,59,69,67,84,63,95,81 ,46,49,60,64,66,74,55,58,63,65,68,76,72,48,72,87,85,76,90,65,88,74,92,83,67,76,65,83,93,67.

试用代码(Matlab/Python/C等)实现求解上述两个班期末成绩的五数概况,并画出五数盒图。

个人答案

使用Python实现结果如下:

import matplotlib.pyplot as plt    #绘图库
import numpy as np                 #数组库
# 1.创建成绩数组
data1 = [82,92,77,62,70,36,80,100,74,64,63,56,72,78,68,65,72,80,58,92,79,92,65,56,85,73,61,71,42,89]
data2 = [57,67,64,54,77,65,71,58,59,69,67,84,63,95,81 ,46,49,60,64,66,74,55,58,63,65,68,76,72,48,72,87,85,76,90,65,88,74,92,83,67,76,65,83,93,67]

# 2.求出最小值,Q1,中位数,Q3,最大值
min_2015 = np.min(data_2015)               #2015级成绩的最小值
max_2015 = np.max(data_2015)               #2015级成绩的最大值
median_2015 = np.median(data_2015)         #2015级成绩的中位数
q1_2015 = np.percentile(data_2015,25)      #2015级成绩的Q1
q3_2015 = np.percentile(data_2015,75)      #2015级成绩的Q3
​
min_2019 = np.min(data_2019)               #2019级成绩的最小值
max_2019 = np.max(data_2019)               #2019级成绩的最大值
median_2019 = np.median(data_2019)         #2019级成绩的中位数
q1_2019 = np.percentile(data_2019,25)      #2019级成绩的Q1
q3_2019 = np.percentile(data_2019,75)      #2019级成绩的Q3print("2015级:",min_2015,max_2015,median_2015,q1_2015,q3_2015)
print("2019级:",min_2019,max_2019,median_2019,q1_2019,q3_2019)

# 3.绘制五数盒图
data = [data_2015,data_2019]
plt.boxplot(data)

labels = ['2015','2019']  #设置特征名称
plt.xticks(np.arange(1, len(labels) + 1), labels)

plt.show()         #显示图表

代码运行结果如下:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sillyfoxzero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值