Martians are actively engaged in interplanetary trade. Olymp City, the Martian city known for its spaceport, has become a place where goods from all the corners of our Galaxy come. To deliver even more freight from faraway planets, Martians need fast spaceships.
A group of scientists conducts experiments to build a fast engine for the new spaceship. In the current experiment, there are nn elementary particles, the ii-th of them has type aiai.
Denote a subsegment of the particle sequence (a1,a2,…,ana1,a2,…,an) as a sequence (al,al+1,…,aral,al+1,…,ar) for some left bound ll and right bound rr (1≤l≤r≤n1≤l≤r≤n). For instance, the sequence (1 4 2 8 5 7)(1 4 2 8 5 7) for l=2l=2 and r=4r=4 has the sequence (4 2 8)(4 2 8) as a subsegment. Two subsegments are considered different if at least one bound of those subsegments differs.
Note that the subsegments can be equal as sequences but still considered different. For example, consider the sequence (1 1 1 1 1)(1 1 1 1 1) and two of its subsegments: one with l=1l=1 and r=3r=3 and another with l=2l=2 and r=4r=4. Both subsegments are equal to (1 1 1)(1 1 1), but still considered different, as their left and right bounds differ.
The scientists want to conduct a reaction to get two different subsegments of the same length. Denote this length kk. The resulting pair of subsegments must be harmonious, i. e. for some ii (1≤i≤k1≤i≤k) it must be true that the types of particles on the ii-th position are the same for these two subsegments. For example, the pair (1 7 3)(1 7 3) and (4 7 8)(4 7 8) is harmonious, as both subsegments have 77 on the second position. The pair (1 2 3)(1 2 3) and (3 1 2)(3 1 2) is not harmonious.
The longer are harmonious subsegments, the more chances for the scientists to design a fast engine. So, they asked you to calculate the maximal possible length of harmonious pair made of different subsegments.
Input
The first line contains an integer tt (1≤t≤1001≤t≤100) — the number of test cases. The following are descriptions of the test cases.
The first line contains an integer nn (2≤n≤1500002≤n≤150000) — the amount of elementary particles in the sequence.
The second line contains nn integers aiai (1≤ai≤1500001≤ai≤150000) — types of elementary particles.
It is guaranteed that the sum of nn over all test cases does not exceed 3⋅1053⋅105.
Output
For each test, print a single integer, maximal possible length of harmonious pair made of different subsegments. If such pair does not exist, print −1−1 instead.
Example
input
Copy
4 7 3 1 5 2 1 3 4 6 1 1 1 1 1 1 6 1 4 2 8 5 7 2 15 15
output
Copy
4 5 -1 1
Note
The first test case is shown on the picture below:
As you can see from it, you may choose the subsegments (2 1 3 4)(2 1 3 4) and (3 1 5 2)(3 1 5 2), which are a harmonious pair. Their length is equal to 44, so the answer is 44.
In the second test case, you need to take two subsegments: one with l=1l=1 and r=5r=5, and one with l=2l=2 and r=6r=6. It's not hard to observe that these segments are a harmonious pair and considered different even though they are both equal to (1 1 1 1 1)(1 1 1 1 1).
In the third test case, you cannot make a harmonious pair, so the answer is −1−1.
思路:首先要知道两个相邻的数相同,那么就是得出最大长度是n-1,如果两个相邻数不同,那么长度就是i(重复的数)后面的数个数,加上前面i的前面数的个数,例如:ixii 当在4位置时这就是要加上前面i的位置
造样例方法:知道题的关键,造样例要多次出现它(看会出现什么情况)
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=2e5;
int a[N],st[N],pre[N];
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
memset(st,0,sizeof st);
memset(pre,0,sizeof pre);
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
int ans=-1;
for(int i=1;i<=n;i++)
{
st[a[i]]++;
if(pre[a[i]])
{
ans=max(ans,n-i+pre[a[i]]);
}
pre[a[i]]=i;
}
cout<<ans<<endl;
}
return 0;
}