Python应用案例——基于Flask框架的医疗专家系统小程序

目录

一、项目需求:

二、编译环境:

三、项目结构:

四、功能演示:

1、登录页面

2、主页面

3、病例百科页面

4、疾病速查页面

五、部分代码展示

六、程序源码


一、项目需求:

1、用户通过输入病症描述,系统自动返回给用户最相似的病例信息和治疗方案。

2、能搜索、展示一个或全部病例信息。

二、编译环境:

编译器:Pycharm2022.2.1

全栈框架:Flask2.2.5

编程语言:Python3.7

深度学习框架:TensorFlow2.3

第三方库及版本号:gensim4.2.0、jieba0.42.1、numpy1.21.6、pandas1.3.5、pip21.3.1

三、项目结构:

四、功能演示:

1、登录页面

用户名:admin、密码:111111

2、主页面

症状检测中: 

 显示检测结果:

3、病例百科页面

4、疾病速查页面

五、部分代码展示

登录视图:

#登录
@app.route('/login', methods=['GET', 'POST'])
def login():
    if request.method == 'POST':
        user_id = request.form['username']
        password = request.form['password']
        if user_id in users and users[user_id]['password'] == password:
            user = User(user_id)
            login_user(user)
            return render_template('index.html')
        else:
            return 'Invalid credentials'
    return render_template('login.html')

解决问题视图:

#解决问题
@app.route('/problem',methods=["POST","GET"])
@login_required
def problem():
    # 获取用户的问题
    user_problem = request.form.get("problem")
    if user_problem is None:
        user_problem = "空咳、有痰、脑袋发昏。鼻塞,不通气,流清鼻涕。"
    # 获取医生的答案
    doctor_answer = get_doctor_answer(user_problem)
    return render_template('index.html',problem = user_problem,answer = doctor_answer)

前端页面:

Word2Vec文本匹配算法参考:https://blog.csdn.net/qq_51701007/article/details/136038742?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136038742%22%2C%22source%22%3A%22qq_51701007%22%7D  

六、程序源码

本专栏订阅用户私聊发程序源码

非本专栏订阅用户下载链接:https://download.csdn.net/download/qq_51701007/88859496

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码骑士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值