【暑假集训】 新型冠状病毒(COVID19)传播

本文介绍了一个数学建模问题,涉及N名晨跑者在景观道上跑步,其中一人在起点携带病毒。病毒仅在相同位置传播,求解最终会被感染的人数。通过输入晨跑者的起始位置和速度,程序计算得出可能的感染人数。这是一个结合运动学和传染病传播的数学应用问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题描述】
在一个风景秀丽的小镇,一天早上,有 N 名晨跑爱好者(编号 1 ~ N )沿着优雅的江边景观道朝同一方向进行晨跑,第 i 名跑者从位置 Si 处起跑, 且其速度为 Vi。换句话说,对所有的实数 t ≥ 0,在时刻 t 时第 i 名跑者的位置为 Si + Vi ·t。

   很不幸的是,其中一名跑者在 t = 0 的时刻感染了病毒,且是无症状感染者,这种病毒只会在同一时刻处在同一位置的跑者之间传播,新感染了病毒的跑者也会感染其他人,很显然,等待足够长的时间,那么病毒会感染 一些特定的跑者。

   事后发现其中有一名跑者感染了新冠病毒,如果此人就是在 t = 0 时刻的那名感染者,那么,在 N 名晨跑爱好者中会有多少人感染新冠病毒?
#include<iostream>
#include<cmath>
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll max_v = LONG_MIN; ll min_v = LONG_MAX;
const int MAXSIZE = 1e7 + 10;

ll s[MAXSIZE];
ll v[MAXSIZE];
int main()
{
    ll n,k;
    cin>>n>>k;
    for(int i = 1 ; i< n + 1 ; i++)
    {
        cin>>s[i];
    }
    for(int j = 1 ; j < n + 1 ; j ++)
    {
        cin>>v[j];
    }
    int ans = 0;
    for(int i = 1 ; i <= n ; i ++)
    {
        //must be infected
        if(s[i] < s[k] && v[i] > v[k] || s[i] > s[k] && v[i] < v[k])
        {
            max_v = max(max_v,v[i]);
            min_v = min(min_v,v[i]);
        }
        if(s[i] == s[k])
        {
            ans++;
            max_v = max(max_v,v[i]);
            min_v = min(min_v,v[i]);
        }
    }
    for(int i = 1 ; i <= n ; i ++)
    {
        if(s[i] < s[k] && v[i] > min_v || s[i] > s[k] && v[i] <max_v)
        {
            ans++;
        }
    }
    cout<<ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值