D. Treelabeling

Treelabeling
结论:每个点都能是必胜点,最高位的1在相同位子则能走,否则不能走
那么可以按1的最高位子来处理(最高位的1在相同位子的进行分堆) ,对树奇偶染色,同一堆的不能分开放

//#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline")
#include<bits/stdc++.h>
#define int long long
#define fi first
#define se second
#define pb push_back
#define pii pair<int,int>
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int inf=8e18;
const int maxn=2e5+100;
int col[maxn];
int ans[maxn];
vector<int>g[maxn];
vector<int>v[2];
void dfs(int x,int f)
{
	for(auto it:g[x])
	{
		if(it==f)continue;
		col[it]=col[x]^1;
		v[col[it]].pb(it);
		dfs(it,x);
	}
}
signed main()
{
	IOS
	int tt;
	cin>>tt;
	while(tt--)
	{
		priority_queue<pii>q;
		int n;
		cin>>n;
		for(int i=1; i<n; i++)
		{
			int x,y;
			cin>>x>>y;
			g[x].pb(y);
			g[y].pb(x);
		}
		v[0].pb(1);
		dfs(1,-1);
		for(int i=0;; i++)
		{
			int l=1<<i;
			int r=(1<<(i+1))-1;
			if(r<n)	q.push({r-l+1,l});
			else
			{
				q.push({n-l+1,l});
				break;
			}
		}
		int l=0,r=0;
		while(!q.empty())
		{
			if(v[0].size()-l>v[1].size()-r)
			{
				auto now=q.top();
				for(int i=l; i<l+now.fi; i++)
				{
					ans[v[0][i]]=now.se+i-l;
				}
				l+=now.fi;
			}
			else
			{
				auto now=q.top();
				for(int i=r; i<r+now.fi; i++)
				{
					ans[v[1][i]]=now.se+i-r;
				}
				r+=now.fi;
			}
			q.pop();
		}
		for(int i=1; i<=n; i++)
		{
			cout<<ans[i]<<" ";
		}
		cout<<"\n";
		for(int i=1; i<=n; i++)
		{
			g[i].clear();
			col[i]=0;
			ans[i]=0;
		}
		v[0].clear();
		v[1].clear();
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thusloop

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值