最长公共子序列(动态规划)

概念

1.若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
2.给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
3.给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列

解题思路

设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列Z{z1,z2,…,zk},则:

若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。
若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。
若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

用c[i][j]记录序列和的最长公共子序列的长度。
Xi={x1,x2,…,xi};Yj={y1,y2,…,yj}。
当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时C[i][j]=0。
其它情况下,由最优子结构性质可建立递归关系如下:
在这里插入图片描述

在这里插入图片描述

计算最长公共子序列的动态规划算法--计算最优值
#define NUM 100
int c[NUM][NUM];
int b[NUM][NUM];
void LCSLength (int m, int n, const char x[],char y[])
{  
  int i,j;
  //数组c的第0行、第0列置0
  for (i = 1; i <= m; i++) c[i][0] = 0;
  for (i = 1; i <= n; i++) c[0][i] = 0;
  //根据递推公式构造数组c
  for (i = 1; i <= m; i++)
  for (j = 1; j <= n; j++)
  {
	if (x[i]==y[j]) 
	  {c[i][j]=c[i-1][j-1]+1; b[i][j]=1; }		//↖
	else if (c[i-1][j]>=c[i][j-1]) 
		{c[i][j]=c[i-1][j]; b[i][j]=2; }		//↑
	else { c[i][j]=c[i][j-1]; b[i][j]=3; }			//←
  }
}

在这里插入图片描述

计算最长公共子序列的动态规划算法--构造最长公共子序列
void LCS(int i,int j,char x[])
{
	if (i ==0 || j==0) return;
	if (b[i][j]== 1){ LCS(i-1,j-1,x);  printf("%c",x[i]); }
	else if (b[i][j]== 2) LCS(i-1,j,x);
	else LCS(i,j-1,x);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值