思路:其实看到最短距离的最大值,就可以想到用二分去做,但是还是无从下手,不知道二分什么,感觉这个题对于我来说还是有些困难,自己去做还是做不出,不过看了题解也能通透不少
首先这个跳跃距离的区间它是单调递增的,然后我们其实可以以这个距离为区间去枚举最短的跳跃距离x,然后去检查x的合法性。我们就把x看作最短的跳跃距离,然后以这个最短的跳跃距离去移动石头,我们判断两个石头之间的距离,如果这两个石头之间的距离小于x,那我们就需要把这个石头给移走,因为x已经是最短的了,不可能出现比x还短的,搞一个计数器num,移一次,计数器就加一,如果num超出了题目给的范围,那么这个x就是不合法的,移动的石头的个数超出了题目给的范围,也就是说,我们枚举的最短距离x太大了,所以就要在左边的区间去找.如果num小于等于题目给的范围(即为M),就代表当前枚举的x是合法的,我们就找到了一个符合的x,但是这时候,要求最大的最短距离,我们继续在右边的区间去找,看看能不能找到更大的值。
套第二个二分的板子(见整数二分的模板)
//https://www.acwing.com/problem/content/description/521/
#include<iostream>
using namespace std;
int L,n,m;
int a[50000+10];
bool check(int x)
{
int before=0;
int num=0;
for(int i=0;i<n;i++)
{
if(a[i]-before<x)
{
num++;
}
else
{
before=a[i];
}
}
if(num<=m)
{
return true;
}
else
{
return false;
}
}
int main()
{
cin>>L>>n>>m;
for(int i=0;i<n;i++)
{
cin>>a[i];
}
//二分跳跃距离,把这个跳跃距离看成是最短跳跃距离,然后以这个距离去移石头
int l=0;
int r=L;
while(l<r)
{
int mid=(l+r+1)>>1;
if(check(mid))
{
l=mid;
}
else
{
r=mid-1;
}
}
cout<<l<<endl;
}