经典CNN模型(四):GoogLeNet(PyTorch详细注释版)

一. GoogLeNet 神经网络介绍

GoogLeNet,也被称为 Inception-v1,是由 Google 的研究人员设计的一种深度卷积神经网络(CNN),并在 2014 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC 2014)中获得了第一名。GoogLeNet 的主要设计目标是在不显著增加计算成本的前提下,提高网络的深度和宽度,从而提高模型的准确率。

二. 概念拓展

1. inception 结构

1.1 inception 原始结构

GoogLeNet 提出了一种并联结构,下图是论文中提出的 inception 原始结构,将特征矩阵同时输入到多个分支进行处理,并将输出的特征矩阵按深度进行拼接,得到最终输出。

  • inception 的作用:增加网络深度和宽度的同时减少参数。

在这里插入图片描述

注意:每个分支所得特征矩阵的高和宽必须相同(通过调整 stride 和 padding),以保证输出特征能在深度上进行拼接。

1.2 inception + 降维

在 inception 的基础上,还可以加上降维功能的结构,如下图所示,在原始 inception 结构的基础上,在分支 2,3,4 上加入了卷积核大小为 1x1 的卷积层,目的是为了降维(减小深度),减少模型训练参数,减少计算量。
在这里插入图片描述

1.3 卷积核(1×1)的降维功能

同样是对一个深度为 512 的特征矩阵使用 64 个大小为 5x5 的卷积核进行卷积,不使用 1x1 卷积核进行降维的 话一共需要 819200 个参数,如果使用 1x1 卷积核进行降维一共需要 50688 个参数,明显少了很多。

在这里插入图片描述

  • 注:CNN 参数个数 = 卷积核尺寸×卷积核深度 × 卷积核组数 = 卷积核尺寸 × 输入特征矩阵深度 × 输出特征矩阵深度

2. 辅助分类器(Auxiliary Classifier)

  • GoogLeNet 有 3 个输出层,其中的两个是辅助分类层。
  • 如下图所示,网络主干右边的 两个分支 就是 辅助分类器,其结构一模一样。
    在训练模型时,将两个辅助分类器的损失乘以权重(论文中是 0.3)加到网络的整体损失上,再进行反向传播。
    在这里插入图片描述
  • 辅助分类器的两个分支有作用:

在这里插入图片描述

  • 作用一:可以把他看做 inception 网络中的一个小细节,它确保了即便是隐藏单元和中间层也参与了特征计算,他们也能预测图片的类别,他在 inception 网络中起到一种调整的效果,并且能防止网络发生过拟合。
  • 作用二:给定深度相对较大的网络,有效传播梯度反向通过所有层的能力是一个问题。通过将辅助分类器添加到这些中间层,可以期望较低阶段分类器的判别力。在训练期间,它们的损失以折扣权重(辅助分类器损失的权重是 0.3)加到网络的整个损失上。

3. GoogLeNet 网络参数

对于 Inception 模块,所需要使用到参数有 #1x1,#3x3reduce,#3x3,#5x5reduce, #5x5, poolproj,这 6 个参数,分别对应着所使用的卷积核个数。
在这里插入图片描述

  • #1x1 对应着分支 1 上 1x1 的卷积核个数
  • #3x3reduce 对应着分支 2 上 1x1 的卷积核个数
  • #3x3 对应着分支 2 上 3x3 的卷积核个数
  • #5x5reduce对应着分支 3 上 1x1 的卷积核个数
  • #5x5对应着分支 3 上 5x5 的卷积核个数
  • poolproj对应着分支 4 上 1x1 的卷积核个数

三. GoogLeNet 神经网络结构

GoogLeNet 总共有 22 层,由 9 个 Inception v1 模块和 5 个池化层以及其他一些卷积层和全连接层构成。该网络有 3 个输出层,其中的两个是辅助分类层,如下图所示:
在这里插入图片描述
在这里插入图片描述

GoogLeNet,也称为 Inception-v1,是一种深度卷积神经网络(CNN),其核心特色在于使用了 Inception 模块,这使得网络能够在深度和宽度上扩展,同时保持计算效率。下面是一个简化的 GoogLeNet 网络结构概述:

初始层

  • 卷积层:GoogLeNet 开始于一个 7x7 的卷积层,通常带有步幅为 2,用于初步提取图像中的基本特征。
  • 最大池化层:紧随其后的是一个 3x3 的最大池化层,步幅为 2,用于减小特征图的尺寸,降低计算量。
  • 卷积层:之后是两个连续的 3x3 卷积层,用于进一步特征提取。
  • 最大池化层:再次进行最大池化,继续减小特征图的尺寸。

Inception 模块

GoogLeNet 的核心是 Inception 模块,它们通常在初始层之后被多次重复。一个典型的 Inception 模块包含以下部分:

  • 1x1 卷积:用于降维,减少后续计算的成本。
  • 3x3 卷积:用于提取局部特征,通常在 1x1 卷积之后。
  • 5x5 卷积:用于捕获更大范围的特征,同样在 1x1 卷积之后。
  • 最大池化:用于捕捉图像中的重要特征,同时在池化之后使用 1x1 卷积以保持通道数。

所有这些操作的输出会被拼接在一起,形成 Inception 模块的输出。

辅助分类器

GoogLeNet 在中间部分包含一到两个辅助分类器,它们在训练期间提供额外的监督信号,帮助网络学习更加鲁棒的特征表示。辅助分类器包括一个平均池化层,一个或多个 1x1 卷积层,一个全连接层,最后是一个 softmax 分类层。

输出层

在一系列 Inception 模块之后,GoogLeNet 使用全局平均池化层来将特征图转换为固定长度的向量。然后,这个向量被馈送到一个全连接层,最后是 softmax 分类层,用于生成各个类别的概率预测。

具体结构

一个具体的 GoogLeNet 网络可能会包含多个 Inception 模块的堆叠,通常在模块之间会有最大池化层用于降低特征图的尺寸。网络的总深度约为 22 层,这包括卷积层、Inception 模块和全连接层。

请注意,GoogLeNet 的具体实现可能因版本而异,比如 Inception-v2、Inception-v3、Inception-v4 等,它们在 Inception 模块的设计和整个网络的结构上有所改进和调整。但是,上述描述概括了 GoogLeNet 的原始版本的基本结构和设计思想。

四. GoogLeNet 模型亮点

GoogLeNet,又称为 Inception-v1,是 Google 在 2014 年 ImageNet 竞赛中提出的一种深度卷积神经网络,其设计亮点和创新之处对后续的深度学习研究产生了深远影响。以下是 GoogLeNet 的一些关键亮点:

  1. Inception 模块

    • 多尺度特征提取:Inception 模块设计用于并行处理信息,通过在同一层中使用不同大小的卷积核(如 1x1、3x3、5x5)和最大池化,能够捕捉到不同尺度的特征。
    • 降维机制:每个卷积层之前会有一个1x1的卷积层,用于降维,减少计算成本,同时学习通道之间的关系。
  2. 全局平均池化

    • GoogLeNet 使用全局平均池化层来取代传统的全连接层,这不仅减少了参数量,还避免了过拟合,同时加快了训练速度。
  3. 模块化设计

    • 整个网络采用模块化设计,便于层的添加与修改,增加了网络的灵活性和可扩展性。
  4. 辅助分类器

    • 在网络的中间层加入辅助分类器,为深层网络提供了额外的监督信号,有助于缓解梯度消失问题,使深层网络更容易训练。
  5. 深度与参数控制

    • 尽管 GoogLeNet 有 22 层深,但由于 Inception 模块的高效设计,整体参数量并没有显著增加,相比于其他深度网络,如 VGGNet,GoogLeNet 的模型大小更小。
  6. 1x1 卷积核的应用

    • 1x1 的卷积核不仅用于降维,还能在不改变特征图尺寸的情况下增加网络的非线性表达能力,从而改善分类性能。
  7. 优化的训练策略

    • 包括使用 Batch Normalization(批量归一化)等技巧,进一步提高了网络的训练稳定性和收敛速度。
  8. 创新的网络结构

    • GoogLeNet 的结构创新在于它解决了深度网络中的几个关键问题,如参数过多导致的过拟合、计算复杂度过大以及梯度消失现象。

GoogLeNet 的设计理念和架构上的创新不仅使其在ImageNet竞赛中取得了优异的成绩,也为后续的深度学习模型如 Inception-v2、Inception-v3、Inception-v4以及 Inception-ResNet 等版本的发展奠定了基础,这些后续模型进一步优化了网络结构,提高了模型的性能和效率。

五. GoogLeNet代码实现

开发环境配置说明:本项目使用 Python 3.6.13 和 PyTorch 1.10.2 构建,适用于CPU环境。

  • model.py:定义网络模型
  • train.py:加载数据集并训练,计算 loss 和 accuracy,保存训练好的网络参数
  • predict.py:用自己的数据集进行分类测试
  1. model.py
import torch.nn as nn
import torch
import torch.nn.functional as F

#   创建所需的模板文件
#   基本卷积模板
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

#   Inception 结构模板
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        #   将输入特征矩阵分别输入到四个分支
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)
        #   将输出放入一个列表中
        outputs = [branch1, branch2, branch3, branch4]
        #   通过torch.cat合并四个输出,合并维度为1,即按照通道维度合并
        return torch.cat(outputs, 1)

#   InceptionAux 辅助分类器模板
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        #   aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14

        x = self.averagePool(x)
        #   aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4

        x = self.conv(x)
        #   N x 128 x 4 x 4

        #   特征矩阵展平,从channel维度开始展平
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        #   N x 2048

        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        #   N x 1024

        x = self.fc2(x)
        #   N x num_classes
        return x

#   定义GoogLeNet网络
class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weight=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)  # ceil_mode=True 计算为小数时,向上取整
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        #   辅助分类器
        if aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        #   AdaptiveAvgPool2d 自适应全局平均池化
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weight:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:  # eval model lose this layer
            return x, aux2, aux1
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
  1. train.py
import torch
import torch.nn as nn
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import torch.optim as optim
from model import GoogLeNet
import os
import json


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)

data_transform = {
    "train" : transforms.Compose([transforms.RandomResizedCrop(224),   # 随机裁剪
                                  transforms.RandomHorizontalFlip(), # 随机翻转
                                  transforms.ToTensor(),
                                  transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))]),
    "val" : transforms.Compose([transforms.Resize((224, 224)),    # 不能224,必须(224, 224)
                                transforms.ToTensor(),
                                transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])}

#   获取数据集所在的根目录
#   通过os.getcwd()获取当前的目录,并将当前目录与".."链接获取上一层目录
data_root = os.path.abspath(os.path.join(os.getcwd(), ".."))

#   获取花类数据集路径
image_path = data_root + "/data_set/flower_data/"

#   加载数据集
train_dataset = datasets.ImageFolder(root=image_path + "/train",
                                     transform=data_transform["train"])

#   获取训练集图像数量
train_num = len(train_dataset)

#   获取分类的名称
#   {'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}
flower_list = train_dataset.class_to_idx

#   采用遍历方法,将分类名称的key与value反过来
cla_dict = dict((val, key) for key, val in flower_list.items())

#   将字典cla_dict编码为json格式
json_str = json.dumps(cla_dict, indent=4)
with open("class_indices.json", "w") as json_file:
    json_file.write(json_str)

batch_size = 32
train_loader = DataLoader(train_dataset,
                          batch_size=batch_size,
                          shuffle=True,
                          num_workers=0)

validate_dataset = datasets.ImageFolder(root=image_path + "/val",
                                        transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = DataLoader(validate_dataset,
                             batch_size=batch_size,
                             shuffle=True,
                             num_workers=0)

#   定义模型
net = GoogLeNet(num_classes=5, aux_logits=True, init_weight=True)   # 实例化模型
net.to(device)
loss_function = nn.CrossEntropyLoss()   # 定义损失函数
#pata = list(net.parameters())   # 查看模型参数
optimizer = optim.Adam(net.parameters(), lr=0.0003)  # 定义优化器

#   设置存储权重路径
save_path = './googleNet.pth'
best_acc = 0.0
for epoch in range(1):
    # train
    net.train()  # 用来管理Dropout方法:训练时使用Dropout方法,验证时不使用Dropout方法
    running_loss = 0.0  # 用来累加训练中的损失
    for step, data in enumerate(train_loader, start=0):
        #   获取数据的图像和标签
        images, labels = data
        #   将历史损失梯度清零
        optimizer.zero_grad()

        #   参数更新
        #   因为采用了辅助分类器,得到了三个输出(主输出和两个辅助输出)
        logits, aux_logits2, aux_logits1 = net(images.to(device))
        #   计算三个损失
        loss0 = loss_function(logits, labels.to(device))
        loss1 = loss_function(aux_logits1, labels.to(device))
        loss2 = loss_function(aux_logits2, labels.to(device))
        #   将三个损失相加,得到最终损失
        loss = loss0 + loss1 * 0.3 + loss2 * 0.3
        loss.backward()                                    # 误差反向传播
        optimizer.step()                                   # 更新节点参数

        #   打印统计信息
        running_loss += loss.item()
        #   打印训练进度
        rate = (step + 1) / len(train_loader)
        a = "*" * int(rate * 50)
        b = "." * int((1 - rate) * 50)
        print("\rtrain loss: {:^3.0f}%[{}->{}]{:.3f}".format(int(rate * 100), a, b, loss), end="")
    print()

    # validate
    net.eval()  # 关闭Dropout方法
    acc = 0.0
    #   验证过程中不计算损失梯度
    with torch.no_grad():
        for data_test in validate_loader:
            test_images, test_labels = data_test
            outputs = net(test_images.to(device))
            predict_y = torch.max(outputs, dim=1)[1]
            #   acc用来累计验证集中预测正确的数量
            #   对比预测值与真实标签,sum()求出预测正确的累加值,item()获取累加值
            acc += (predict_y == test_labels.to(device)).sum().item()
        accurate_test = acc / val_num
        #   如果当前准确率大于历史最优准确率
        if accurate_test > best_acc:
            #   更新历史最优准确率
            best_acc = accurate_test
            #   保存当前权重
            torch.save(net.state_dict(), save_path)
        #   打印相应信息
        print("[epoch %d] train_loss: %.3f  test_accuracy: %.3f"%
              (epoch + 1, running_loss / step, acc / val_num))

print("Finished Training")
  1. predict.py
import torch
from model import GoogLeNet
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json

data_transform = transforms.Compose(
    [transforms.Resize((224, 224)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])

#   加载预测图片
img = Image.open("./郁金香.png")
#   展示图片
plt.imshow(img)
#   图像预处理 [C, H, W]
img = data_transform(img)
#   扩充图像维度 [N, C, H, W]
img = torch.unsqueeze(img, dim=0)

# 读取 class_indict
try:
    json_file = open("./class_indices.json", "r")
    class_indict = json.load(json_file)
except Exception as e:
    print(e)
    exit(-1)

#   初始化网络
model = GoogLeNet(num_classes=5, aux_logits=False)
#   加载权重
model_weight_path = "./googleNet.pth"
#   载入网络模型  strict=False不载入辅助分类器
missingkey, unexpected_keys = model.load_state_dict(torch.load(model_weight_path), strict=False)
#   采用eval()模式,关闭Dropout方法
model.eval()
#   不去跟踪变量的损失梯度
with torch.no_grad():
    #   model(img)将图像输入模型得到输出,采用squeeze压缩维度,即将Batch维度压缩掉
    output = torch.squeeze(model(img))
    #   采用softmax将最终输出转化为概率分布
    predict = torch.softmax(output, dim=0)
    #   获取概率最大处的索引值
    predict_cla = torch.argmax(predict).numpy()

#   打印类别名称及其对应的预测概率
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()

六. 参考内容

  1. 李沐. (2019). 动手学深度学习. 北京: 人民邮电出版社. [ISBN: 978-7-115-51364-9]
  2. 霹雳吧啦Wz. (202X). 深度学习实战系列 [在线视频]. 哔哩哔哩. URL
  3. PyTorch. (n.d.). PyTorch官方文档和案例 [在线资源]. URL
  • 28
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值