- 博客(21)
- 问答 (1)
- 收藏
- 关注
原创 深度学习相关知识
如果设置batch_size的大小,那么在fit_generator时 , steps_per_epoch = len(x_train) // (batch_size*epochs)steps_per_epoch:一轮epoch包含的步数(每一步是batch_size个数据送入),使用TensorFlow数据Tensor输入张量进行训练时,默认None自动分割,即数据集样本数/batch_size。例如,总共有100张训练图片,且batch_size批大小为50,则steps_per_epoch值为2。
2025-10-27 14:55:12
188
原创 图像处理方法——python
3、设置整个文件夹的图像为平均亮度(可以加上一个值,更亮)(5,5)表示把图像分为五纵五横,可以酌情修改;2、计算图像的信息熵、均值、标准差、信噪比。1、限制对比度自适应直方图均衡化。4、伽马矫正调节图像亮度。5、调整亮度值大于130。
2025-10-27 14:52:37
144
原创 万向门->百宝箱
对于分割过程中的评价标准主要采用Dice相似系数(Dice Similariy Coefficient,DSC),Dice系数是一种集合相似度度量指标,通常用于计算两个样本的相似度,值的范围 (0,1) ,分割结果最好时值为 1 ,最差时值为 0.Dice对mask的内部填充比较敏感,而hausdorff distance 对分割出的边界比较敏感。(空白处点击右键,调节段落。行距最小值,段前0行,段后6行)4、下载PPT模板的网站NICE!5、word插入图片不显示。6、图像分割判定指标。
2025-10-27 14:52:14
223
原创 液压与气压传动技术
恩氏黏度的测定方法为:测定200cm3某一温度的被测液体在自重作用下流过直径为2.8mm小孔所需的时间tA,然后测出同体积的蒸馏水在20℃时流过同一孔所需的时间 tB (tB=50~52s),tA与tB的比值即为液体的恩氏黏度。液压油的牌号,就是采用它在40℃时运动黏度的平均值来标号的。液体在外力作用下流动时,由于液体分子间的内聚力而产生一种阻碍液体分子之间进行相对运动的内摩擦力,液体的这种产生内摩擦力的性质称为液体的黏性。表示液体抵抗变形的能力,即液体黏性的大小,称为液体的动力黏度,也称为绝对黏度。
2025-10-27 14:50:54
830
原创 气路控制基础知识——知识地图
调速阀一般分二通调速阀和三通调速阀,二通调速阀是由一个定差减压阀和一个节流阀串联组成,三通调速阀是由一个定差溢流阀和一个节流阀并联组成,但它们都有一个共同的特性:即保持节流阀进、出油口的压差基本恒定,这样通过节流阀的流量只和阀口开度A有关,与负载压力波动无关 调速阀貌似也叫补偿阀 节流阀就像一个水龙头,你拧的大了水就流的多,但是在水龙头拧相同圈数的情况下管道里的压力高,水就流的多,压力小水就流的少。由于是强制受阻节流,所以节流前后会产生较大的压力差,受控流体的压力损失比较大,也就是说节流后的压力会减小。
2025-10-27 14:48:46
1005
原创 DL-Practise / OpenSitUp 训练自己的数据集(关键点检测)
源码一、下载code建立虚拟环境:conda create -n AI python = 3.8.5激活虚拟环境:activate AI切换路径:e:cd E:\xxxxxxx\OpenSitUp-main\OpenSitUp-main\Trainer修改train.py:运行 :python train.py二、准备自己的数据集切换到:E:\xxxxxxxx\OpenSitUp-main\OpenSitUp-main\LabelTool安装一些库pip install PyQt5
2022-06-06 18:20:59
1101
5
原创 深度学习入门笔记-----杨立AI
老师视频课一、Python开发环境安装1、安装anaconda,官网打开比较慢,可以搜索 清华大学开源软件镜像站 如下图所示:2、安装社区版pycharm3、cmd中创建虚拟环境 (ctrl+C结束正在运行的程序)二、第一个深度学习实例:手写字符识别代码:https://github.com/mivlab/AI_course创建虚拟环境:conda env list(查看有什么环境)conda create -n AI python=3.8.5(创建环境AI,Python版本为3
2022-05-29 22:32:01
657
原创 深度学习模型部署与工程实践
一、深度学习的随机性#seed随机种子(Python种子、numpy种子、torch种子)最终成绩=Min(不同随机种子带来的分数)#优化器(模型参数更新的方法SGD\Adam)与学习率(参数更新的幅度)初学者一般设置学习率为一个不可变的数值,但是也可以设置成可变的。#人工调参调整模型参数选择:通过验证集精度选择模型参数,类似人工筛选。比如:batch_size、超参数、步长、学习率lr等参数。#Dropout:在训练过程中加入随机性(更改每次训练的迭代)例如:当Dropout=0.2时
2022-05-25 21:51:55
552
原创 windows10安装yolov5_obb时的一些报错记录
1、使用netron查看yolov5s-best.onnx模型结构。在终端运行(切换到模型文件所在路径)pip install netronpythonimport netronnetron.start(‘best.onnx’)如下图所示:
2022-04-21 17:16:01
9576
14
原创 rotate_yolov5
一、Dota数据集准备安装roLabelImg:http://github.com/cgvict/roLabelImg下载后解压到没有中文的路径下打开cmd,创建虚拟环境conda create -n roLabelImg python=3.8.5conda activate roLabelImg安装需要的库pip install PyQt5pip install lxml切换到第一步下载的源码目录,(即有roLabelImg.py的路径下)然后执行代码pyrcc5 -o resou
2022-04-19 17:19:51
1950
6
原创 轮廓检测——元件针脚
标记针脚检测元件针脚并标记(不灵活)基础太浅,记录一下代码import cv2import numpy as npimg = cv2.imread('17.jpg')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv2.imshow("gray",gray)#定义ROImask = np.zeros(gray.shape, dtype=np.uint8)#cv2.imshow("mask", mask)mask[0:121, 134:481
2022-04-18 09:21:32
2905
原创 detectron2安装在win10并运行测试--呕心沥血教程
记录不易,继续加油目录一、 环境要求1、Pycharm2、anaconda自带的python3.8.83、cuda11.2+torch4、vs20195、conda4.11.0二、安装步骤三、测试案例detectron2安装在win10并运行测试提示:以下是本篇文章正文内容,下面案例可供参考一、确保电脑有合适的GPU——CUDA与torch版本创建虚拟环境:打开开始——Anaconda Prompt (anaconda)——右键,更多:以管理员身份运行;输入:conda cr
2021-12-21 17:09:28
6120
13
原创 亮度归一化
Pycharm_python_opencv批量调节图片亮度至相近亮度值`import numpy as npimport cv2import os# 调整最大值+MAX_VALUE = 100def update(input_img_path, output_img_path, brightness,saturation): """ 用于修改图片的亮度和饱和度 :param input_img_path: 图片路径 :param output_img_p
2021-10-14 14:39:40
798
原创 vs2015opencv图像重映射——波浪特效
图像重映射//opencv includes#include"opencv2/core/utility.hpp"#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include<opencv2/imgproc/imgproc.hpp>#include<opencv2/opencv.hpp>#include<iostream>//#includ
2021-09-30 14:01:33
349
空空如也
请问什么原因,有朋友知道吗?
2021-08-12
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅