人工智能学习


前言

本博客仅做学习笔记,如有侵权,联系后即刻更改

科普:


概述

智能

  1. 观点
  1. 思维理论
  2. 知识阈值理论
    强调知识对智能的重要意义和作用
  3. 进化理论
  1. 包含的能力
  1. 感知能力
  2. 记忆和思维能力
  3. 学习和自适应能力
  4. 行为能力

人工智能

  1. 定义
  1. 能力:人工的方法在机器上实现的智能
  2. 学科:一门研究如何构造智能机器或系统,使其能模拟、延伸和拓展人类智能的学科
  1. 学派
  2. 符号主义

又称逻辑主义、心理学派或计算机学派,基于物理符号系统假设和有限合理性原理

  1. 连接主义

又称仿生学派或生理学派,基于神经网络及网络间的连接机制与学习算法

  1. 行为主义

又称进化主义或控制论学派,基于控制论和"感知–动作"控制系统

  1. 研究和应用领域
  2. 机器思维
  1. 推理
  2. 搜索
  3. 规划
  1. 机器学习
  1. 符号主义机器学习
    例如支持向量机(统计学习)
  2. 连接注意机器学习
    例如卷积神经网络学习
  3. 知识发现和数据挖掘

确定性知识系统

符号主义:知识是一切智能行为的基础

知识系统的构建两大技术:知识表示、知识推理

知识

知识 = 信息 + 关联

  1. 特性

不确定性
正确性
可表示性
可利用性

  1. 类型
  1. 按适用范围
    常识性知识、领域性知识
  2. 按作用效果和等级
    陈述性知识(零级):例如地点、工具、费用
    过程性知识(一级):例如方式
    控制性知识(二级):比较结论
  3. 按知识的确定性
    确定性和不确定性
  1. 知识表示的概念和方法
  1. 表示能力
  2. 可利用性
  3. 可组织性
  4. 可理解性和可实现性

陈述性知识表示方法可分为

  • 非结构化方法
    一阶谓词逻辑表示法、产生式表示法
  • 结构化方法
    语义网络表示法、框架表示法

确定性知识推理

  1. 推理的方法
  2. 推理的控制策略
  1. 推理的概念
  1. 推理的心理学观点
    结构观点、过程观点
  2. 推理的心理过程
    三段论推理、线性推理、条件推理、概率推理
  3. 推理过程都是由推理机完成的
  1. 推理方法和分类
  1. 按推理的逻辑基础分类
    演绎推理(三段论)、归纳推理(增值新知识)
  2. 按所用知识的确定性分类
    确定性推理、不确定性推理
  3. 按推理过程的单调性分类
    单调推理、非单调推理
  1. 推理控制策略及其分类
  • 推理策略
    主要解决推理方向、求解策略、限制策略、冲突消解策略
  • 搜索策略
    主要解决推理线路、推理效果、推理效率

确定性知识表示方法

主要包括谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法

逻辑谓词表示法

  1. 命题与真值
  • 命题:具有真假意义的断言
    断言:一个陈述句
  1. 论域和谓词
  • 论域:由所讨论对象之全体构成的非空集合
  • 谓词:谓词名和个体
    谓词名:大写字母表示,个体与之相反
  1. 连接词和量词

非、合取、析取、条件(蕴含)

总结

小小励志

有些事你现在不做,一辈子都不会做了。
如果你想做一件事,全世界都会为你让路。
《搭车去柏林》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值