前言
本博客仅做学习笔记,如有侵权,联系后即刻更改
科普:
概述
智能
- 观点
- 思维理论
- 知识阈值理论
强调知识对智能的重要意义和作用- 进化理论
- 包含的能力
- 感知能力
- 记忆和思维能力
- 学习和自适应能力
- 行为能力
人工智能
- 定义
- 能力:人工的方法在机器上实现的智能
- 学科:一门研究如何构造智能机器或系统,使其能模拟、延伸和拓展人类智能的学科
- 学派
- 符号主义
又称逻辑主义、心理学派或计算机学派,基于物理符号系统假设和有限合理性原理
- 连接主义
又称仿生学派或生理学派,基于神经网络及网络间的连接机制与学习算法
- 行为主义
又称进化主义或控制论学派,基于控制论和"感知–动作"控制系统
- 研究和应用领域
- 机器思维
- 推理
- 搜索
- 规划
- 机器学习
- 符号主义机器学习
例如支持向量机(统计学习)- 连接注意机器学习
例如卷积神经网络学习- 知识发现和数据挖掘
确定性知识系统
符号主义:知识是一切智能行为的基础
知识系统的构建两大技术:知识表示、知识推理
知识
知识 = 信息 + 关联
- 特性
不确定性
正确性
可表示性
可利用性
- 类型
- 按适用范围
常识性知识、领域性知识- 按作用效果和等级
陈述性知识(零级):例如地点、工具、费用
过程性知识(一级):例如方式
控制性知识(二级):比较结论- 按知识的确定性
确定性和不确定性
- 知识表示的概念和方法
- 表示能力
- 可利用性
- 可组织性
- 可理解性和可实现性
陈述性知识表示方法可分为
- 非结构化方法
一阶谓词逻辑表示法、产生式表示法- 结构化方法
语义网络表示法、框架表示法
确定性知识推理
- 推理的方法
- 推理的控制策略
- 推理的概念
- 推理的心理学观点
结构观点、过程观点- 推理的心理过程
三段论推理、线性推理、条件推理、概率推理- 推理过程都是由推理机完成的
- 推理方法和分类
- 按推理的逻辑基础分类
演绎推理(三段论)、归纳推理(增值新知识)- 按所用知识的确定性分类
确定性推理、不确定性推理- 按推理过程的单调性分类
单调推理、非单调推理
- 推理控制策略及其分类
- 推理策略
主要解决推理方向、求解策略、限制策略、冲突消解策略- 搜索策略
主要解决推理线路、推理效果、推理效率
确定性知识表示方法
主要包括谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法
逻辑谓词表示法
- 命题与真值
- 命题:具有真假意义的断言
断言:一个陈述句
- 论域和谓词
- 论域:由所讨论对象之全体构成的非空集合
- 谓词:谓词名和个体
谓词名:大写字母表示,个体与之相反
- 连接词和量词
非、合取、析取、条件(蕴含)
总结
小小励志
有些事你现在不做,一辈子都不会做了。
如果你想做一件事,全世界都会为你让路。
《搭车去柏林》