供应链初学者手册——第三部分:供应链设计与优化(二)

供应链初学者手册


第三部分:供应链设计与优化

7. 供应链优化方法

供应链优化方法是指通过数学建模和优化算法,改善供应链的效率和效益。这些方法包括线性规划、整数规划、动态规划和模拟方法等。在本部分中,我们将详细介绍这些优化方法及其应用。

7.1 线性规划和整数规划

**线性规划(Linear Programming, LP)**是一种数学优化方法,用于求解一个线性目标函数的最大化或最小化问题,约束条件也是线性的。线性规划广泛应用于供应链管理中,如生产规划、运输优化和库存管理等。

**整数规划(Integer Programming, IP)**是线性规划的一种特殊形式,其中决策变量必须是整数。整数规划适用于离散决策问题,如选址、设备配置和订单分配等。

线性规划的基本公式

线性规划的基本模型可以表示为:

Minimize Z = c T x \text{Minimize} \quad Z = c^T x MinimizeZ=cTx

Subject to A x ≤ b \text{Subject to} \quad Ax \leq b Subject toAxb

x ≥ 0 x \geq 0 x0

其中:

  • c c c 是目标函数的系数向量
  • x x x 是决策变量向量
  • A A A 是约束矩阵
  • b b b 是约束向量

线性规划的推导过程

假设我们有一个工厂生产两种产品A和B,每种产品的利润分别为 c 1 c_1 c1 c 2 c_2 c2,生产每种产品所需的资源分别为 a 11 a_{11} a11, a 12 a_{12} a12 a 21 a_{21} a21, a 22 a_{22} a22,资源的总量分别为 b 1 b_1 b1 b 2 b_2 b2。我们的目标是最大化总利润。

目标函数可以表示为:

Z = c 1 x 1 + c 2 x 2 Z = c_1 x_1 + c_2 x_2 Z=c1x1+c2x2

约束条件为:

a 11 x 1 + a 12 x 2 ≤ b 1 a_{11} x_1 + a_{12} x_2 \leq b_1 a11x1+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值