RRT*(Rapidly-exploring Random Trees Star)算法 定义+特性+原理+公式+Python示例代码(带详细注释)

RRT*算法通过随机扩展搜索树并优化路径成本,提供了一种在复杂环境中寻找最优路径的方法。文章介绍了算法原理、公式推导,展示了Python代码示例,并探讨了其在机器人导航、自动驾驶等领域的应用以及面临的优化挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


引言

RRT*(Rapidly-exploring Random Trees Star)算法是一种用于高效路径规划的算法,特别适用于复杂或约束性的环境中。作为RRT(Rapidly-exploring Random Trees)的改进版本,RRT*不仅继承了RRT的高效探索性质,还引入了优化路径的功能,使得最终的路径成本趋于最优。

定义

RRT* 算法是一种用于寻找高维空间中最优路径的算法。它在标准RRT的基础上引入了路径成本的概念,并通过最小化该成本来提升路径质量。算法以一种随机化的方式扩展搜索树,每次迭代随机采样并尝试连接最近节点,如果新节点可以通过连接其他节点而降低到达其的总成本,则优化其在树中的位置。RRT* 通过不断迭代这一过程,渐进地向全局最优解收敛。该算法的核心优势是无需梯度信息,且具有处理复杂、非凸问题的能力,使其适用于机器人路径规划和自动驾驶等领域。

基本原理及公式推导

RRT*算法的基本原理

RRT*算法的目标是找到一条从起点到终点的近似最优路径。它通过迭代地扩展搜索树,并在过程中优化路径成本来实现这一目标。在每次迭代中,算法执行以下步骤:

  1. 随机采样:在搜索空间中随机选取一个新的点 q r a n d q_{rand} qrand,作为扩展树的候选方向。

  2. 节点选择:在树中找到一个已有节点 q n e a r q_{near} qnear,使得它与新采样点 q r a n d q_{rand} qrand之间的距离最小。

  3. 节点扩展:从 q n e a r q_{near} qnear沿着 q r a n d q_{rand} qrand的方向创建一个新节点 q n e w q_{new} qnew,这个新节点是向目标方向的一步扩展。

  4. 成本计算:计算从起点到 q n e w q_{new} qnew的路径成本,即累积成本。

  5. 选择父节点:在 q n e w q_{new} qnew附近找到一组节点 Q n e a r Q_{near} Qnear,并尝试将其中某些节点作为 q n e w q_{new} qnew的父节点,如果这样可以减少到达 q n e w q_{new} qnew的成本。

  6. 更新树:如果通过 q n e w q_{new} qnew可以降低 Q n e a r Q_{near} Qnear中其他节点的成本,那么重新连接这些节点,使 q n e w q_{new} qnew成为它们的父节点。

公式推导和变量解释

对于上述步骤4和5中涉及的成本计算和父节点选择,我们可以使用以下公式进行详细推导:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值