引言
RRT*(Rapidly-exploring Random Trees Star)算法是一种用于高效路径规划的算法,特别适用于复杂或约束性的环境中。作为RRT(Rapidly-exploring Random Trees)的改进版本,RRT*不仅继承了RRT的高效探索性质,还引入了优化路径的功能,使得最终的路径成本趋于最优。
定义
RRT* 算法是一种用于寻找高维空间中最优路径的算法。它在标准RRT的基础上引入了路径成本的概念,并通过最小化该成本来提升路径质量。算法以一种随机化的方式扩展搜索树,每次迭代随机采样并尝试连接最近节点,如果新节点可以通过连接其他节点而降低到达其的总成本,则优化其在树中的位置。RRT* 通过不断迭代这一过程,渐进地向全局最优解收敛。该算法的核心优势是无需梯度信息,且具有处理复杂、非凸问题的能力,使其适用于机器人路径规划和自动驾驶等领域。
基本原理及公式推导
RRT*算法的基本原理
RRT*算法的目标是找到一条从起点到终点的近似最优路径。它通过迭代地扩展搜索树,并在过程中优化路径成本来实现这一目标。在每次迭代中,算法执行以下步骤:
-
随机采样:在搜索空间中随机选取一个新的点 q r a n d q_{rand} qrand,作为扩展树的候选方向。
-
节点选择:在树中找到一个已有节点 q n e a r q_{near} qnear,使得它与新采样点 q r a n d q_{rand} qrand之间的距离最小。
-
节点扩展:从 q n e a r q_{near} qnear沿着 q r a n d q_{rand} qrand的方向创建一个新节点 q n e w q_{new} qnew,这个新节点是向目标方向的一步扩展。
-
成本计算:计算从起点到 q n e w q_{new} qnew的路径成本,即累积成本。
-
选择父节点:在 q n e w q_{new} qnew附近找到一组节点 Q n e a r Q_{near} Qnear,并尝试将其中某些节点作为 q n e w q_{new} qnew的父节点,如果这样可以减少到达 q n e w q_{new} qnew的成本。
-
更新树:如果通过 q n e w q_{new} qnew可以降低 Q n e a r Q_{near} Qnear中其他节点的成本,那么重新连接这些节点,使 q n e w q_{new} qnew成为它们的父节点。
公式推导和变量解释
对于上述步骤4和5中涉及的成本计算和父节点选择,我们可以使用以下公式进行详细推导:
设