HDFS高可用集群搭建

HDFS高可用集群搭建

1.使用完全分布式,实现namenode高可用
2.安装包解压
停止之前的hadoop集群的所有服务,然后重新解压编译后的hadoop压缩包

在三台机器上分别创建以下目录:
mkdir -p /opt/software
mkdir -p /opt/server

解压压缩包
node1机器执行以下命令进行解压
cd /opt/software
tar -zxvf hadoop-2.7.5.tar.gz -C /opt/server/
cd /opt/server/hadoop-2.7.5/etc/hadoop

3.配置文件的修改
以下操作都在node1机器上进行
3.1.修改core-site.xml

<!-指定NameNode的HA高可用的zk地址 -->
< property >
< name >ha.zookeeper.quorum< /name>
< value >node1:2181,node2:2181,node3:2181< /value >
< /property >
<!- 指定HDFS访问的域名地址 -->
< property>
< name>fs.defaultFS< /name>
< value>hdfs://ns< /value >
< /property >
<! – 临时文件存储目录 -->
< property >
< name >hadoop.tmp.dir< /name >
< value >/opt/server/hadoop-2.7.5/data/tmp< /value >
< /property >
< !-- 开启hdfs垃圾箱机制,指定垃圾箱中的文件七天之后就彻底删掉
单位为分钟
–>
< property >
< name >fs.trash.interval
< value >10080
< /property>
< /configuration>
3.2.修改hdfs-site.xml
< !-- Put site-specific property overrides in this file. -->

< !-- 指定命名空间 -->
< property>
< name>dfs.nameservices< /name>
< value>ns< /value >
< /property >
<! – 指定该命名空间下的两个机器作为我们的NameNode -->
< property>
< name>dfs.ha.namenodes.ns< /name>
< value>nn1,nn2< /value >
< /property >

< !-- 配置第一台服务器的namenode通信地址 -->
< property>
< name>dfs.namenode.rpc-address.ns.nn1
< value>node1:8020
< /property>
< !-- 配置第二台服务器的namenode通信地址 -->
< property>
< name>dfs.namenode.rpc-address.ns.nn2< /name>
< value>node2:8020< /value>
< /property>
<! – 所有从节点之间相互通信端口地址 -->
< property>
< name>dfs.namenode.servicerpc-address.ns.nn1< /name>
< value >node1:8022< /value>
< /property>
< !-- 所有从节点之间相互通信端口地址 -->
< property>
< name>dfs.namenode.servicerpc-address.ns.nn2< /name>
< value>node2:8022< /value>
< /property>

< !-- 第一台服务器namenode的web访问地址 – >
< property>
< name>dfs.namenode.http-address.ns.nn1< /name>
< value>node1:50070< /value>
< /property>
<! – 第二台服务器namenode的web访问地址 -->
< property>
< name>dfs.namenode.http-address.ns.nn2< /name>
< value>node2:50070< /value>
< /property>

< !-- journalNode的访问地址,注意这个地址一定要配置 -->
< property>
< name>dfs.namenode.shared.edits.dir< /name>
< value>qjournal://node1:8485;node2:8485;node3:8485/ns1< /value>
< /property>
< !-- 指定故障自动恢复使用的哪个java类 -->
< property >
< name>dfs.client.failover.proxy.provider.ns< /name>
< value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider< /value>
< /property>

< !-- 故障转移使用的哪种通信机制 -->
< property>
< name>dfs.ha.fencing.methods< /name>
< value>sshfence< /value>
< /property>

< !-- 指定通信使用的公钥 -->
< property>
< name>dfs.ha.fencing.ssh.private-key-files< /name>
< value>/root/.ssh/id_rsa< /value>
< /property>
< !-- journalNode数据存放地址 -->
< property>
< name>dfs.journalnode.edits.dir< /name>
< value>/opt/server/hadoop-2.7.5/data/dfs/jn< /value>
< /property>
< !-- 启用自动故障恢复功能 -->
< property>
< name>dfs.ha.automatic-failover.enabled< /name>
< value>true< /value>
< /property>
< !-- namenode产生的文件存放路径 -->
< property>
< name>dfs.namenode.name.dir< /name>
< value>file:///opt/server/hadoop-2.7.5/data/dfs/nn/name< /value>
< /property>
< !-- edits产生的文件存放路径 -->
< property>
< name>dfs.namenode.edits.dir< /name>
< value>file:///opt/server/hadoop-2.7.5/data/dfs/nn/edits< /value>
< /property>
< !-- dataNode文件存放路径 -->
< property>
< name>dfs.datanode.data.dir< /name>
< value>file:///opt/server/hadoop-2.7.5/data/dfs/dn< /value>
< /property>
< !-- 关闭hdfs的文件权限 -->
< property>
< name>dfs.permissions< /name>
< value>false< /value>
< /property>
< !-- 指定block文件块的大小 -->
< property>
< name>dfs.blocksize< /name>
< value>134217728< /value>
< /property>
< /configuration>

3.3.修改yarn-site.xml,注意node3与node2配置不同
< configuration>
< !-- Site specific YARN configuration properties -->
< !-- 是否启用日志聚合.应用程序完成后,日志汇总收集每个容器的日志,这些日志移动到文件系统,例如HDFS. -->
< !-- 用户可以通过配置"yarn.nodemanager.remote-app-log-dir"、"yarn.nodemanager.remote-app-log-dir-suffix"来确定日志移动到的位置 -->
< !-- 用户可以通过应用程序时间服务器访问日志 -->

<  !-- 启用日志聚合功能,应用程序完成后,收集各个节点的日志到一起便于查看 -  - >
< property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
</property>


<!--开启resource manager HA,默认为false-->
<property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
</property>
<!-- 集群的Id,使用该值确保RM不会做为其它集群的active -->
<property>
    <name>yarn.resourcemanager.cluster-id</name>
    <value>mycluster</value>
</property>
<!--配置resource manager  命名-->
<property>
    <name>yarn.resourcemanager.ha.rm-ids</name>
    <value>rm1,rm2</value>
</property>
<!-- 配置第一台机器的resourceManager -->
<property>
    <name>yarn.resourcemanager.hostname.rm1</name>
    <value>node2</value>
</property>
<!-- 配置第二台机器的resourceManager -->
<property>
    <name>yarn.resourcemanager.hostname.rm2</name>
    <value>node3</value>
</property>

<!-- 配置第一台机器的resourceManager通信地址 -->
<property>
    <name>yarn.resourcemanager.address.rm1</name>
    <value>node2:8032</value>
</property>
<property>
    <name>yarn.resourcemanager.scheduler.address.rm1</name>
    <value>node2:8030</value>
</property>
<property>
    <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
    <value>node2:8031</value>
</property>
<property>
    <name>yarn.resourcemanager.admin.address.rm1</name>
    <value>node2:8033</value>
</property>
<property>
    <name>yarn.resourcemanager.webapp.address.rm1</name>
    <value>node2:8088</value>
</property>

<!-- 配置第二台机器的resourceManager通信地址 -->
<property>
    <name>yarn.resourcemanager.address.rm2</name>
    <value>node3:8032</value>
</property>
<property>
    <name>yarn.resourcemanager.scheduler.address.rm2</name>
    <value>node3:8030</value>
</property>
<property>
    <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
    <value>node3:8031</value>
</property>
<property>
    <name>yarn.resourcemanager.admin.address.rm2</name>
    <value>node3:8033</value>
</property>
<property>
    <name>yarn.resourcemanager.webapp.address.rm2</name>
    <value>node3:8088</value>
</property>


<!--开启resourcemanager自动恢复功能-->
<property>
    <name>yarn.resourcemanager.recovery.enabled</name>
    <value>true</value>
</property>
<!--在node2上配置rm1,在node3上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改,其他机器上不配置此项-->
<property>
    <name>yarn.resourcemanager.ha.id</name>
    <value>rm1</value>
    <description>If we want to launch more than one RM in single node, we need this configuration</description>
</property>

<!--用于持久存储的类。尝试开启-->
<property>
    <name>yarn.resourcemanager.store.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>node2:2181,node3:2181,node1:2181</value>
    <description>For multiple zk services, separate them with comma</description>
</property>
<!--开启resourcemanager故障自动切换,指定机器-->
<property>
    <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
    <value>true</value>
    <description>Enable automatic failover; By default, it is enabled only when HA is enabled.</description>
</property>
<property>
    <name>yarn.client.failover-proxy-provider</name>
    <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
</property>
<!-- 允许分配给一个任务最大的CPU核数,默认是8 -->
<property>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>2</value>
</property>
<!-- 每个节点可用内存,单位MB -->
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>2048</value>
</property>
<!-- 单个任务可申请最少内存,默认1024MB -->
<property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>1024</value>
</property>
<!-- 单个任务可申请最大内存,默认8192MB -->
<property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>2048</value>
</property>
<!--多长时间聚合删除一次日志 此处-->
<property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>2592000</value><!--30 day-->
</property>
<!--时间在几秒钟内保留用户日志。只适用于如果日志聚合是禁用的-->
<property>
    <name>yarn.nodemanager.log.retain-seconds</name>
    <value>604800</value><!--7 day-->
</property>
<!--指定文件压缩类型用于压缩汇总日志-->
<property>
    <name>yarn.nodemanager.log-aggregation.compression-type</name>
    <value>gz</value>
</property>
<!-- nodemanager本地文件存储目录-->
<property>
    <name>yarn.nodemanager.local-dirs</name>
    <value>/opt/server/hadoop-2.7.5/yarn/local</value>
</property>
<!-- resourceManager  保存最大的任务完成个数 -->
<property>
    <name>yarn.resourcemanager.max-completed-applications</name>
    <value>1000</value>
</property>
<!-- 逗号隔开的服务列表,列表名称应该只包含a-zA-Z0-9_,不能以数字开始-->
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>

<!--rm失联后重新链接的时间-->
<property>
    <name>yarn.resourcemanager.connect.retry-interval.ms</name>
    <value>2000</value>
</property>

< /configuration>

3.4.修改mapred-site.xml
< configuration>
< !–指定运行mapreduce的环境是yarn -->
< property>
< name>mapreduce.framework.name< /name>
< value>yarn< /value>
< /property>
< !-- MapReduce JobHistory Server IPC host:port -->
< property>
< name>mapreduce.jobhistory.address< /name>
< value>node3:10020< /value>
< /property>
< !-- MapReduce JobHistory Server Web UI host:port -->
< property>
< name>mapreduce.jobhistory.webapp.address< /name>
< value>node3:19888< /value>
< /property>
< !-- The directory where MapReduce stores control files.默认 ${hadoop.tmp.dir}/mapred/system -->
< property>
< name>mapreduce.jobtracker.system.dir< /name>
< value>/opt/server/hadoop-2.7.5/data/system/jobtracker< /value>
< /property>
< !-- The amount of memory to request from the scheduler for each map task. 默认 1024–>
< property>
< name>mapreduce.map.memory.mb< /name>
< value>1024< /value>
< /property>
< !--
< name>mapreduce.map.java.opts< /name>
< value>-Xmx1024m< /value>
< /property> -->
<! – The amount of memory to request from the scheduler for each reduce task. 默认 1024–>
< property>
< name>mapreduce.reduce.memory.mb< /name>
< value>1024< /value>
< /property>
< !--
< name>mapreduce.reduce.java.opts< /name>
< value>-Xmx2048m< /value>
< /property> -->
<! – 用于存储文件的缓存内存的总数量,以兆字节为单位。默认情况下,分配给每个合并流1MB,给个合并流应该寻求最小化。默认值100–>
< property>
< name>mapreduce.task.io.sort.mb< /name>
< value>100< /value>
< /property>

< !-- <property>
             <name>mapreduce.jobtracker.handler.count</name>
        <value>25</value>
        </property>-->
<!-- 整理文件时用于合并的流的数量。这决定了打开的文件句柄的数量。默认值10-->
<property>
    <name>mapreduce.task.io.sort.factor</name>
    <value>10</value>
</property>
<!-- 默认的并行传输量由reduce在copy(shuffle)阶段。默认值5-->
<property>
    <name>mapreduce.reduce.shuffle.parallelcopies</name>
    <value>15</value>
</property>
<property>
    <name>yarn.app.mapreduce.am.command-opts</name>
    <value>-Xmx1024m</value>
</property>
<!-- MR AppMaster所需的内存总量。默认值1536-->
<property>
    <name>yarn.app.mapreduce.am.resource.mb</name>
    <value>1536</value>
</property>
<!-- MapReduce存储中间数据文件的本地目录。目录不存在则被忽略。默认值${hadoop.tmp.dir}/mapred/local-->
<property>
    <name>mapreduce.cluster.local.dir</name>
    <value>/opt/server/hadoop-2.7.5/data/system/local</value>
</property>

< /configuration>

3.5.修改slaves
node1
node2
node3

3.6.修改hadoop-env.sh
export JAVA_HOME=/export/server/jdk1.8.0_241

3.7. mapred-env.sh
export JAVA_HOME=/export/server/jdk1.8.0_241

4.集群启动过程
将第一台机器的安装包发送到其他机器上

第一台机器执行以下命令,创建目录
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/name
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/edits
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/name
mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/edits

第一台机器执行以下命令:
cd /opt/server
scp -r hadoop-2.7.5/ node2:/opt/server
scp -r hadoop-2.7.5/ node3:/opt/server

更改node3的rm2
第二台机器执行以下命令
vim yarn-site.xml

< !–在node2上配置rm1,在node3上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,
但这个在YARN的另一个机器上一定要修改,其他机器上不配置此项
注意我们现在有两个resourceManager 第二台是rm1 第三台是rm2
这个配置一定要记得去node3上面改好

–>
< property>
< name>yarn.resourcemanager.ha.id< /name>
< value>rm2< /value>
< description>If we want to launch more than one RM in single node, we need this configuration< /description>
< /property>

4.1.启动zookeepr
三台zk都需要启动
/export/server/zookeeper-3.4.6/bin/zkServer.sh start

4.2.启动HDFS过程
node1机器执行以下命令
cd /opt/server/hadoop-2.7.5
bin/hdfs zkfc -formatZK
sbin/hadoop-daemons.sh start journalnode
bin/hdfs namenode -format
bin/hdfs namenode -initializeSharedEdits -force
sbin/start-dfs.sh

node2上面执行
cd /opt/server/hadoop-2.7.5
bin/hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode

4.2.1.启动yarn过程
node2上执行
cd /opt/server/hadoop-2.7.5
sbin/start-yarn.sh

node3上面执行
cd /opt/server/hadoop-2.7.5
sbin/start-yarn.sh

4.2.2.查看resourceManager状态

node2上面执行
cd /opt/server/hadoop-2.7.5
bin/yarn rmadmin -getServiceState rm1

node3上面执行
cd /opt/server/hadoop-2.7.5
bin/yarn rmadmin -getServiceState rm2

4.2.3.node3启动jobHistory
node3机器执行以下命令启动jobHistory
cd /opt/server/hadoop-2.7.5
sbin/mr-jobhistory-daemon.sh start historyserver

4.2.4.hdfs状态查看
node1机器查看hdfs状态
http://192.168.88.161:50070/dfshealth.html#tab-overview
node2机器查看hdfs状态
http://192.168.88.162:50070/dfshealth.html#tab-overview

4.2.5.yarn集群访问查看
http://192.168.88.163:8088/cluster
4.2.6.历史任务浏览界面
页面访问:
http://192.168.88.163:19888/jobhistory

注意:
如果namenode其中一个宕机, 无法完成自动切换, 则是缺少 fuser这个安装包,  需要使用:  yum -y install psmisc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值