提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
一、题目描述
在一个 n×m 的矩阵里面有一些雷,你需要根据一些信息找出雷来。
如果某个格子没有雷,那么它里面的数字表示和它 连通的格子里面雷的数目。
现在棋盘是 n×2 的,第一列里面某些格子是雷,而第二列没有雷。
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务是根据第二列的信息确定第一列雷有多少种摆放方案。
输入格式:
第一行为n(n <= 10000) ,第二行有 n个数,依次为第二列的格子中的数。
输出格式:
一个数,即第一列中雷的摆放方案数。。
输入样例:
在这里给出一组输入。例如:
2
1 1
输出样例:
在这里给出相应的输出。例如:
2
二、算法分析
我们令b[i] 代表第一列每个数的状态那么就有从第二行开始 b[i]+b[i-1]+b[i-2]=a[i]; 一直枚举到第n+1行,那么就知道了第二列中a[i]是否摆放正确。
三、代码
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
typedef unsigned long long ull;
const int N=10010,P=131;
char s1[N],s2[N];
int a[N],n,b[N];
// 我们令b[i] 代表第一列每个数的状态那么就有从第二行开始 b[i]+b[i-1]+b[i-2]=a[i];
bool check(){
for(int i=2;i<=n+1;i++){
b[i]=a[i-1]-b[i-1]-b[i-2];
if(b[i]<0) return false; //小于0不可行
}
return !b[n+1]; //如果最后n+1行结果为0 代表这是个可行的方法
}
int main(){
int ans=0;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
if(check()) ans++;
b[1]=1; //当第一个格子有雷时
if(check()) ans++;
cout<<ans;
}