点云
文章平均质量分 89
开山论文
BeringStrait_
白令海峡看上去很窄但是下去了就游不上来,上学也是这样的
展开
-
【点云】《Deep learning-based 3D point cloud classification: A systematic survey and outlook》
它由两部分组成:头文件和点云数据。它有两种数据存储类型,ASCII和二进制,但PCD文件的头文件必须使用ASCII编码,PCD 的一个很好的好处是它可以很好地适应PCL,从而与PCL应用程序相比具有最高的性能。Las文件由三部分组成:头文件区(包括点总数、数据范围、每个点的维度信息)、变长记录区(包括坐标系、额外维度等)、点集记录区域(包括点坐标信息、R、G、B信息、分类信息、强度信息等)体素的特点:体素擅长表示非均匀填充的规则采样空间,因此,体素可以有效地表示点云数据有很多空的或均匀填充的空间。原创 2024-03-13 11:12:23 · 432 阅读 · 0 评论 -
【点云】《A Review of Deep Learning-Based Semantic Segmentation for Point Cloud》
条件随机场 (CRF)** 将原始3D点特征与插值分数相结合进行后处理。原创 2024-03-12 19:00:37 · 549 阅读 · 0 评论 -
【点云】《RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds》
注:该文中扩张卷积(dilated convolution)的体现并不是直接以传统意义上的扩张卷积层来实现,而是通过设计特定的网络结构来模拟扩张卷积的效果,从而增加每个点的接收场(receptive field)注:LocSE和注意力池化都是扩张残差块的组成部分,一个块用两套,扩张残差块加上MLP变成了局部特征聚合LFA,四套LFA加上RS是网络的编码器部分;解码器部分则为四套MLP加上US,其中的US是最近邻插值。RandLA-Net主攻大规模场景点云语义分割。原创 2024-03-26 11:19:23 · 790 阅读 · 0 评论 -
【点云】《PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space》
在PointNet++中,MLP的使用与PointNet类似,但在处理局部区域和多尺度特征时,PointNet++引入了额外的MLP网络来捕捉不同尺度上的局部特征。在PointNet的最后阶段,全局特征向量被送入另一个MLP网络,这个网络根据具体的任务(如分类或分割)来输出最终的预测结果。N是数据集中有N个点,d是欧氏空间维数,二维或者三维,C是每个点还可能具有的其他特征的维度,颜色、法线等。:最远点采样FPS选择子集,比随机采样好,输入是Nx(d+C)个点,输出是选定的N’个中心点形成的点集。原创 2024-03-24 22:37:18 · 747 阅读 · 1 评论