【点云】《RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds》


RandLA-Net主攻大规模场景点云语义分割
之前的网络都是应用于较小点集的,且对语义分割没有太大进展,因为存在以下三个问题:

  1. 这些网络的点采样方法要么计算成本高,要么内存效率低
  2. 依赖于计算昂贵的kernelisation或graph construction,因此无法处理大量的点
  3. 感受野大小有限,无法捕获复杂的结构,要么效率低下

基于这些缺点,RandLA-Net:

  1. 寻找一种能覆盖整个点集且计算量可接受的采样方法–随机采样(Random Sampling,所以叫RandLA-Net)
  2. 随机采样不是没有代价的,因此需要配套一种高效的局部特征学习器,过逐步增加每个点的感受野来保留复杂的局部结构

采样方法

  1. 最远点采样:随机选一个初始点—找一个点集中离初始点最远的点—从剩余的点中选择一个与已选点集中所有点距离最远的点—直到选够。计算量太大,不适用于大规模点云
  2. 逆密度重要性采样:看每个点的k近邻点密度—密度越高点越重要—从密度最低开始选子集直到选够。倾向于选择那些周围点较少的点,从而在减少点数的同时保留了点云的多样性,但是对异常值很敏感。而且计算量也挺大
  3. 随机采样:贼快

然而,随机采样可能会导致许多有用的点特征被丢弃。为了克服这个问题,我们提出了一个强大的局部特征聚合模块(为了一个有价值的大洞打了一个大补丁)

Local Feature Aggregation局部特征聚合

由三个主要块拼成,1) 局部空间编码(LocSE),2) 注意力池化,3) 扩张残差块
这张图画的很好:

LocSE

  1. LocSE:输入的点云中,找到每个点云的k近邻,形成(k,3+d),之后将三维特征(k,3)和其他特征(k,d)分开。(k,3)进行相对点位置编码,公式如下:
    生成(k,d)维的特征,然后与其他特征串联生成(k,2d)的中心点 pi 的局部几何结构进入注意力池化块。

注意力池化

  1. 注意力池化:输入的局部几何特征 Fik 计算注意力分数 Sik,公式如下,函数 g() 由共享 MLP 和 softtmax 组成,其中 W 是共享 MLP 的可学习权重

    得到的Sik与之前的 Fik 作点积后计算加权总和,得到最终特征向量 fi。

总而言之,给定输入点云 P ,对于第 i 个点 pi ,我们的 LocSE 和注意力池单元学习聚合其 K 个最近点的几何图案和特征,并最终生成信息丰富的特征向量 fi

扩张残差块

  1. 扩张残差块:受到Resnet的启发,多次叠加使用 Shared MLP + LocSE + AttentionPooling 组合,这样可以增大每个点的receptive field,就相当于间接地增加了每个点的传播范围。考虑多种因素该论文最后stack了两组。

注:该文中扩张卷积(dilated convolution)的体现并不是直接以传统意义上的扩张卷积层来实现,而是通过设计特定的网络结构来模拟扩张卷积的效果,从而增加每个点的接收场(receptive field)

注:LocSE和注意力池化都是扩张残差块的组成部分,一个块用两套,扩张残差块加上MLP变成了局部特征聚合LFA,四套LFA加上RS是网络的编码器部分;解码器部分则为四套MLP加上US,其中的US是最近邻插值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值