【MOS】《RangeNet++: Fast and Accurate LiDAR Semantic Segmentation》

用RV的

算法优点

  1. 准确地对 LiDAR only 点云进行语义分割
  2. 可以推断完整原始点的语义标签。即使在 3D转2D 和 CNN 过程中忽略了很多点云点,也能避免在语义分割后的图像点还原点云时被丢弃或错分
  3. 计算速度快,超过了 Velodyne 扫描仪的帧工作速率(10Hz)

RangeNet++做的事情:


A:将输入点云转换为RV图像表示
B:2D全卷积语义分割
C:将分割好的 2D 图语义转移到 3D 点云,在原始点云中恢复所有点
D:基于有效距离图像的 3D 点云图像后处理,使用对所有点进行操作的新开发的 3D-kNN 搜索来清除点云中不需要的错误和伪影

A

一般的RV变化,见这里

B

RangeNet++使用的 2D图像语义分割 CNN 网络:

为了在垂直方向上保留信息,我们只在水平方向上进行SubSampling。

损失函数:加权交叉熵:,可以看出类别的权重与其出现的频率成反比,对于数量小但很重要的点(“行人”比之于“道路”)有更多关注

C

主要要克服 2D 点对点云点的缺失问题

由于最初是从点云生成RV图像,这意味着可能从原始点云表示中删除大量点。尤其是为了使CNN的计算速度更快,对点的省略尤其突出。例如,将130000个点投影到[64 × 512]范围的图像上的扫描,将仅剩余32768个点。

因此,为了给原始点云表示中的所有点都赋予一个语义,我们使用初始渲染过程中获得的所有 pi 的所有 (u; v) 对,并用每个点对应的图像坐标对范围图像进行索引。

D

点云后处理问题

一旦标签被投影到原始点云中,存储在同一个像素中的两个或多个点将获得相同的语义标签,(其实就是遮挡,比如路中间的栅栏挡住了后面的点云)如果我们希望使用更小范围的图像表示来推断语义,这个问题就会变得更强

具体如下图

RV图像(左)中的栅栏和汽车都被赋予了适当的语义标签,但在将语义发送回原始点云(右)的过程中,标签也被投影为“阴影”

为了解决这个问题,我们提出了一个快速的、支持gpu的k近邻(kNN)搜索,直接在输入点云中操作


通过上图实验结果可以看出经过后处理的 IoU 和 bIoU 得分都有提升

  • 35
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值