近世代数 知识点整理2

11.3 半群与幺半群的概念

半群

定义:设(S,o)是一个代数系,如果o满足结合律,那么就称S对于乘法o构成一个半群,记为(S,o)。

交换半群(可换半群),有限半群,无限半群。

:全体偶数的集合E对于通常的乘法构成一个可换半群(E,·),它没有单位元。

 定理:如果半群(S,o)中既有左单位元素又有右单位元素,则左单位元素和右单位元素相等,从而有单位元素单位元素唯一

幺半群

定义:有单位元素e的半群(S,o)称为独异点或幺半群。记为(S,o,e)。如果S是一个有限集合,则称(S,o,e)为有限幺半群,S的基数称为幺半群(S,o,e)的

定理:设(S,o,e)是一个幺半群,m,n是任意的非负整数,则\forall a \in S, 有a^m \circ a^n=a^{m+n},(a^m)^n=a^{mn}

定理:有限半群(S,o)为一个幺半群当且仅当\exists s,t\in S使得sS=S,St=S.

如果(S,o,e)是可交换的,则对\forall a,b\in S(a\circ b)^n=a^n\circ b^n 其中a^0=e, ~~a^{n+1}=a^{n}\circ a

此时如果用加号表示该二元运算,则单位元记为“0”, a^n记为na,即0a=0, 1a=a.

逆元素

定义:一个存在单位元素e的代数系统(S, o),若对S内的元素a存在al使得a_l\circ a=e, 则称al为a对运算\circ左逆元素,亦称左逆元。

右逆元素类似。

定义:幺半群(S,o,e)中元素a若有左逆元素al和右逆元素ar,则a_l=a_r,于是a有逆元素且a的逆元素唯一,记为a^{-1}

注意元素的逆元素可以是其本身。例如一个非空集合S的幂集2^s对集合的对称差运算Δ构成一个群,这个群单位元是空集,而每个元素的逆元素就是它本身

12.1 群

定义

每个元素都有逆元素的幺半群称为群。

思考题:设S={a,b,c}在S上定义代数运算“o”,使得:a\circ a=b, b\circ b=c, c\circ c=a,问代数系(S,o)能否构成一个半群?

解答:不能构成半群。已定义代数运算,说明(S,o)是一个代数系。只需要看它是否满足结合律。由题可知a^2=b ,a^4=c, a^8=a。同时,在a o b=a, a o b=c, a o b=c这三式中只要有一个成立,就可以说它满足半群,若都不成立则不满足半群。

1. a o b = a -> a^3 = a -> a^4 = a^2 -> c = b ,而已知c和b不相等(?),故矛盾,不成立。

2. a o b = b -> a^3 = a^2 -> a^4 = a^3 = a^2 -> 同1. 

3. a o b = c -> a^4 = a^5  = a^6 = a^7 = a^8 = a -> a = a^3, 同1. 

思考题2:给出具有有限个元素的半群

解答:最简单的是只有一个元素的半群,且a\circ a=a

第二定义

设G为一非空集合,“o”为G上的二元代数运算,称为乘法,且满足:

  1. 结合律
  2. 有左单位元e
  3. 有左逆元素

则称(G,o)为群。

思考题:

1. 若将上述条件中的左单位元左逆同时改为右单位元和右逆,则该代数系是否仍为群?

是。

2. 若仅将左逆改为右逆,则该代数系是否仍为群?

否。

交换群(可换群)

设(G,o)为群,乘法"o"满足交换律,即对\forall a,b\in Ga\circ b=b\circ a,则(G,o)称为交换群(可换群)或称为阿贝尔群(Abel群)

有限群

设(G,o)为群,且G是有限集,则称(G,o)为有限群,此时称G的基数|G|G的阶

无限群

12.2 群的简单性质

1. 设(G,o)为群,则对\forall a\in G,a的左逆元也是a的右逆元

2. 设(G,o)为群,则G的左单位元也是右单位元

3. 群的两个定义等价

4. 设(G,o)为群,则对\forall a,b\in G

  • (a^{-1})^{-1}=a,
  • (ab)^{-1}=b^{-1}a^{-1}

证明:由逆元素的定义立即得到(a^{-1})^{-1}=a

再由(ab)(b^{-1}a^{-1})=a(bb^{-1})a^{-1}=aea^{-1}=aa^{-1}=e

(b^{-1}a^{-1})(ab)=b^{-1}(a^{-1}a)b=b^{-1}eb = b^{-1}b=e。即得(ab)^{-1}=b^{-1}a^{-1}

5. 设(G,o)为群,则对\forall a,b\in G, 方程(ax=b, ya=b)关于未知量x与y都有唯一解

证明:

6. 非空集合G对其二元代数运算"o"构成一个群的充分必要条件是下列两个条件同时成立:

  1. "o"满足结合律,即\forall a,b,c\in G,~ (a\circ b)\circ c = a\circ (b\circ c)).
  2. \forall a, b\in G, \left\{\begin{matrix} a\circ x = b \\y\circ a = b \end{matrix}\right.在G中有解。

证明:=>由定理12.2.5得到。

<= 设“o”是非空集合G上满足1. 和2. 两个条件的二元代数运算。由1. 知群的公理1成立(满足结合律)。设b是G的一个特定元素,则由2. 知方程y o b = b有解,设e是一个解。于是e o b = b. 

\forall a \in G由2知方程b o x = a在G中有解,设c为其解,则b o c = a.于是我们有

e\circ a = e\circ (b\circ c) = (e\circ b)\circ c = b\circ c = a,从而e是左单位元,故公理2成立。(每个元素都有左单位元)

其次,任意a属于G,由2. 知方程y o a = e在G中有解,其解便是a的左逆元。于是,公理3满足。(每个元素都有左逆)

因此G是群。

7. 群G中的乘法满足消去律,即\forall x, y, a\in G,有

  • 如果ax=ay,则x=y(左消去律)
  • 如果xz=ya,则x=y(右消去律)

8. 非空有限集合G对其二元代数运算“o"构成群的充分必要条件是下两条件同时成立:(可以看成有限群的一个定义,用起来比群的定义方便一些)

  • "o"满足结合律
  • "o"满足左、右消去律。

定义:设(G,o)是一个群,a属于G,则将a^n=e的最小正整数n称为a的阶。如果不存在如此的正整数,则称a的阶为无穷大。

9. 有限群的每个元素的阶不超过该有限群的阶。

例:三阶群是交换群。

:设G是三阶群,则可设G={e, a, b}。显然ea=ae=a, eb=be=b。而如果ab=a,则b=e,这是不可能的,所以ab不等于a,同理ab不等于b,故ab=e。类似地,ba=e。因此,ab=ba。所以,G是可交换群。

12.3 子群与生成子群

子群

定义:设(G,o)为群,S是G的非空子集,若“o“在S中封闭S对此乘法也构成一个群,则称S是G的一个子群

定理1:设G1为G的子群,则G1的单位元也必是G的单位元,G1的元素a在G1中的逆元素也是其在G中的逆元素。

定理2:群G的任意多个子群的还是G的子群。

定理3:任一群不能是其两个真子群的

定理4:群G的非空子集S为G的子群的充分必要条件是:

  1. \forall a,b\in S, ab\in S\forall a\in S, a^{-1} \in S
  2. \forall a,b\in S, ab^{-1}\in S
  3. S有限且SS\in S,即\forall a,b\in F, ab\in F
  • 以上三个条件均各自等价

定理5:群G的有限非空子集F是G的子群的充分必要条件是FF\subseteq F,即\forall a,b\in F, ab\in F

迭代扩张算法

设(G,o)为群,A为G的非空子集,则由A扩充为G的生成子群(A)方法:

  1. 1A_0=A\cup \left \{ a^{-1}|\forall a\in A \right \} // A\cup A^{-1}
  2. A_{n+1}=A_n\cup A_nA_n
  3. A_{n+1}A_{n+1}\subseteq A_{n+1}?若否,转2.,若是,输出(A_n+1,o):((A),o)

中心元素

定义:设(G,o)为群,a\in G,对\forall x\in Gax=xa,则称a为G的中心元素。由G的所有中心元素所构成的集合C称为G的中心

定义2:设M是G的非空子集,则G的 包含M的所有子群 的交称为由M生成的子群,记为(M)。

定理:群G的中心是G的可交换子群

换位子群

定义:设(G,o)为群,对\forall a,b\in G,aba^{-1}b^{-1}称为a与b的换位子

定义:G的所有换位子的集合生成的子群叫做换位子群

显然,G是交换群 当且仅当 单位元e是G的唯一换位子。

  • 11
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值