5-3 半群

思维导图:

 

5-3 半群

定义和概念
  • 半群的基本定义:一个代数系统 <S,∗>,其中 S 是非空集合,∗∗ 是在 S 上的二元运算。若 ∗∗ 封闭且可结合,则称 <S,∗> 为半群。
重要性质
  1. 封闭性 (定义5-3.1)
    • 运算 ∗∗ 在集合 S 上,对于所有 x,y∈S,有 x∗y∈S。
  2. 可结合性 (定义5-3.2)
    • 对于任意 x,y,z∈S,满足 (x∗y)∗z=x∗(y∗z)。
例题分析
  • 例题1:证明在集合 S={x∣x∈Z,x≥k} 上,<Sk​,+> 是半群。
    • 解答:证明加法运算在 S 上封闭且可结合。
  • 例题2:验证在集合 S={a,b,c} 上定义的运算 ΔΔ 构成半群。
    • 解答:通过运算表验证封闭性和可结合性。
子半群的概念 (定理5-3.1)
  • 定义:若 B⊆S 且 ∗∗ 在 B 上封闭,则 <B,∗> 是 <S,∗> 的子半群。
  • 例题3:证明 [0,1][0,1]、(0,1)(0,1) 和 Z 在乘法运算下是 R 的子半群。
有限半群的特殊性质 (定理5-3.2)
  • 定理:在有限集 S 上的半群中,必存在 a∈S 满足 a∗a=a。
含幺元的半群 (定义5-3.3)
  • 独异点:如果半群包含幺元(即存在元素 e 使得对所有 x∈S,有 e∗x=x∗e=x),则称为独异点。
  • 例子:<R,+> 和 <Z,×>。
运算表分析 (定理5-3.3)
  • 特性:含幺元的半群在其运算表中任何两行或两列都是不相同的。
  • 例题4:验证模 m 的加法和乘法在 Zm​ 上构成独异点。
幺元和逆元 (定理5-3.4)
  • 定理:在独异点中,若 a,b∈S 均有逆元,则 (a∗b)−1=b−1∗a−1。

定义:

定义 5-3.1(广群):

  • 代数系统:一个代数系统 〈S,∗〉,其中 S 是非空集合,而 * 是定义在 S 上的二元运算。
  • 封闭性:如果运算 * 是封闭的(即对于所有的 x,y∈S,有 x∗y 也在 S 中),则称代数系统 〈S,∗〉 为广群。

解释:

  • 封闭性:封闭性是指在给定的运算下,集合中的任意两个元素的运算结果仍然在这个集合中。
  • 二元运算:二元运算是指一个操作,它涉及两个输入元素,并产生一个输出元素。

因此,定义 5-3.1 描述的是一种基本的代数结构,它只要求运算在集合内是封闭的。这个定义是理解更复杂代数结构(如半群、群)的基础。理解这个定义有助于深入学习代数系统及其在不同领域的应用。

 

定义 5-3.2(半群):

  • 代数系统:考虑一个代数系统 〈S,∗〉,其中 S 是非空集合,* 是定义在 S 上的二元运算。
  • 封闭性:运算 * 是封闭的,即对于所有的 x,y∈S,有 x∗y 也在 S 中。
  • 结合性:运算 * 是可结合的,即对于任意的 x,y,z∈S,满足 (x∗y)∗z=x∗(y∗z)。
  • 根据这些性质,如果一个代数系统满足封闭性和结合性,它被称为半群。

解释:

  • 封闭性和结合性:半群的定义强调了运算不仅要在集合内封闭,还要满足结合律。这意味着在进行运算时,元素的分组方式不会影响最终结果。
  • 二元运算的含义:二元运算指的是一个涉及两个输入元素并产生一个输出元素的操作。

理解半群的定义对于深入学习更复杂的代数结构,如群和环,非常重要。半群提供了一个基本的框架,用于研究在特定运算下元素如何相互作用。了解这个定义有助于在各种数学和计算领域中更好地理解和应用代数结构。

 

定理:

定理 5-3.1(子半群):

设 〈S,∗〉 是一个半群,B 是 S 的一个子集且 * 在 B 上是封闭的,那么 〈B,∗〉 也是一个半群。

证明过程:

  1. 封闭性

    • 由于 B 是 S 的子集,B 中的元素也属于 S。
    • 根据题设,运算 * 在 B 上是封闭的,即对于所有 b1​,b2​∈B,有 b1​∗b2​ 也在 B 中。
    • 这满足半群对封闭性的要求。
  2. 结合性

    • 因为 〈S,∗〉 是半群,运算 * 在 S 上是结合的。
    • 即对于所有的 s1​,s2​,s3​∈S,有 (s1​∗s2​)∗s3​=s1​∗(s2​∗s3​)。
    • 由于 B 是 S 的子集,对于所有的 b1​,b2​,b3​∈B,上述结合律同样适用。
    • 即 (b1​∗b2​)∗b3​=b1​∗(b2​∗b3​),这满足半群对结合性的要求。
  3. 结论

    • 因此,根据半群的定义(封闭性和结合性),〈B,∗〉 符合作为半群的条件。
    • 所以,如果一个集合的子集在相同的运算下保持运算的封闭性和结合性,那么这个子集也形成一个半群。

结论:

定理 5-3.1 证明了半群的性质可以从原集合传递到其封闭子集中,这在理解和分析代数结构的子结构时非常有用。通过这种方式,可以从更大的代数结构中分离出具有相似性质的较小结构。

 学到了什么?

  1. 代数结构的传递性:证明展示了如何一个复杂的代数结构(如半群)的性质可以传递到其子结构。这意味着如果一个集合在某种运算下形成一个代数结构,那么它的任何封闭子集在相同运算下也会形成相同类型的代数结构。

  2. 子集和子结构的理解:这个证明加深了对子集和子结构在代数系统中的理解。尤其是在处理更大的代数结构时,理解其子结构的性质非常重要。

  3. 封闭性和结合性的重要性:半群的两个核心特性——封闭性和结合性在证明中起到了关键作用。理解这些性质对于理解更复杂的代数概念至关重要。

  4. 数学证明的方法:通过这个证明,我们可以学习到如何使用已知的性质(封闭性和结合性)来推导新的结论。这是数学证明中常用的方法。

  5. 逻辑推理的应用:证明过程展示了如何通过逻辑推理来建立数学论证,从已知事实(S 是半群)推导出新的结论(B 也是半群)。

  6. 数学定义的应用:证明过程中直接应用了半群的定义,显示了理解和应用数学定义在构建数学论证中的重要性。

  7. 分析和推广:这个证明不仅适用于特定的数学问题,也可以推广到其他类似的代数结构和问题中,展现了数学概念和方法的普适性。

数学思想

  1. 结构的继承性:理解如何一个更大的代数结构(半群)的性质可以被其子集继承。
  2. 封闭性与结合性的核心作用:认识到封闭性和结合性在定义代数结构(如半群)中的重要性。

数学思维

  1. 从整体到部分的推理:理解一个全局的性质(如半群的定义)如何影响其局部结构(如子集)。
  2. 逻辑推导:使用逻辑推理来从已知的属性(半群的封闭性和结合性)推导出新的结论(子集也形成半群)。
  3. 抽象思考:在处理代数结构时,能够抽象地考虑其基本属性而不仅仅是具体实例。

数学证明方法

  1. 直接证明:通过直接应用已知条件和定义来证明新的命题。
  2. 构造性证明:构建适当的例子或情形来展示一个定理的正确性。
  3. 使用定义:直接利用数学定义来构建证明的逻辑。

数学证明处理技巧

  1. 细致的分析:在证明过程中对每一个步骤进行细致的分析,确保逻辑的连贯性。
  2. 情形分析:在需要时,对不同的情形进行分析以展示命题在所有情况下都成立。
  3. 简洁明了:使证明尽可能清晰简洁,避免不必要的复杂性。
  4. 检验逻辑:在证明过程中不断检验逻辑推理的正确性,确保每一步都是合理的。

 

定理 5-3.2(有限半群中存在等幂元):

设 〈S,∗〉 是一个有限半群,那么必定存在至少一个 a∈S 使得 a∗a=a。

证明过程:

  1. 选择任意元素

    • 选择任意元素 b∈S。由于 S 是有限集,考虑 b 的连续运算序列:b,b∗b,b∗b∗b,…。
  2. 序列的有限性

    • 因为 S 是有限集,所以这个序列不能无限地产生不同的元素。因此,必然存在两个整数 i<j),使得 bi=bj(这里 bk 表示 b 运算自身 k 次)。
  3. 导出等幂元素

    • 由 bi=bj 可以推出存在等幂元素。考虑 bj−i(b 运算自身 j−i 次)。
    • 由半群的结合性,我们有 bi∗bj−i=bj。
    • 将 bi=bj 代入,得到 bi∗bj−i=bi。
    • 通过在等式两边消去 bi,得到 bj−i=e(这里 e 表示等幂元素)。
  4. 等幂元素的存在性

    • 因此,我们得到了至少一个等幂元素 e(即 e∗e=e),这个元素是 bj−i。

结论:

定理 5-3.2 证明了在任何有限半群中至少存在一个等幂元素。这个证明利用了有限集的性质和半群的结合性,通过构造性的方法展示了等幂元素的存在性。这种证明方法在处理有限结构时非常有用,特别是在代数结构和组合数学中。

学到了什么?

数学思想

  1. 有限集的特性:在有限集合中,连续的操作(如重复的二元运算)最终必然会产生重复的结果,这是鸽巢原理的一个应用。
  2. 结构的重要性:半群的结构特性(如封闭性和结合律)在确定其元素性质(如等幂性)中起着关键作用。

数学思维

  1. 构造性思考:通过构造具体的序列或对象来揭示一般性的数学性质。
  2. 逻辑推理:运用逻辑推理和数学归纳来证明定理,特别是在处理有限结构时。
  3. 从特殊到一般:从一个特定元素的性质推广到整个集合的性质。

数学证明方法

  1. 归纳法和构造法:使用数学归纳法和构造性方法来证明有限集合中的性质。
  2. 消元法:在证明中使用消元法来简化表达式并揭示隐藏的结构。
  3. 反证法:虽然这个证明没有直接用到反证法,但它体现了类似的思想——通过展示不存在反例来证明某个性质的普遍存在。

数学证明处理技巧

  1. 分步处理:将证明分解为逻辑上清晰的步骤,使得每一步都易于理解和跟随。
  2. 查找重复元素:在处理有限集合时,寻找重复元素或结果,这是一种常见的技巧。
  3. 细节的关注:在证明过程中注意每一个细节,确保所有推理都是严谨和合理的。
  4. 结果的普遍性:将特定情况下的发现推广到更广泛的上下文。

 

定理 5-3.3(含有幺元的半群的运算表的唯一性):

设 〈S,∗〉 是一个含有幺元的半群,则在关于运算 ∗∗ 的运算表中,任何两行或两列都是不相同的。

证明过程:

  1. 幺元的性质

    • 设 e 是半群 〈S,∗〉 中的幺元。根据幺元的定义,对于任意的 a∈S,有 e∗a=a∗e=a。
  2. 两行不相同的证明

    • 假设存在 a,b∈S 且 a=b,但在运算表中,由 a 产生的行与由 b 产生的行相同。
    • 这意味着对于所有的 x∈S,我们都有 a∗x=b∗x。
    • 特别地,取 x=e,则 a∗e=b∗e。
    • 因为 e 是幺元,所以 a=b。这与假设 a=b 矛盾。
  3. 两列不相同的证明

    • 以相同的方式,假设存在 a,b∈S 且 a=b,但在运算表中,由 a 产生的列与由 b 产生的列相同。
    • 这意味着对于所有的 x∈S,我们都有 x∗a=x∗b。
    • 特别地,取 x=e,则 e∗a=e∗b。
    • 同样因为 e 是幺元,所以 a=b。这与假设 a=b 矛盾。

结论:

因此,在含有幺元的半群 〈S,∗〉 的运算表中,任何两行或两列都不可能相同。这个证明利用了幺元的性质和逻辑推理,展示了半群结构中元素与运算的独特关系。

学到了什么?

数学思想

  1. 幺元的核心作用:在含有幺元的半群中,幺元对于保证运算表中每行和每列的唯一性起着关键作用。
  2. 代数结构的性质:了解代数结构(如半群)中基本元素(如幺元)的性质对于理解整个结构至关重要。

数学思维

  1. 直观与形式逻辑:运用形式逻辑来证明直观上可能不那么显而易见的性质。
  2. 反证法的应用:使用反证法来证明定理,即假设相反情况并导致矛盾。
  3. 抽象和概括:从特定的运算和元素性质抽象出整个结构的性质。

数学证明方法

  1. 反证法:通过假设存在相同的行或列,并证明这种情况会导致矛盾,从而证明每行或每列的唯一性。
  2. 运用定义:直接应用幺元的定义来推导证明的关键步骤。
  3. 构造特定实例:选择特定元素(如幺元)来构造证明的关键步骤。

数学证明处理技巧

  1. 细节关注:在证明过程中关注每一个逻辑步骤,确保所有推理都是严密的。
  2. 简化复杂性:将复杂的证明问题简化为更易于管理和理解的形式。
  3. 明确和精确:确保证明中的每一步都是明确和精确的,避免模糊或不明确的推理。
  4. 概念的准确应用:正确理解并应用数学概念,如在本例中的幺元。

定理 5-3.4(乘积的逆元):

设 〈S,∗〉 是一个具有幺元的半群,对于任意 a,b∈S,若 a 和 b 均有逆元,则 a∗b 也有逆元,且 (a∗b)−1=b−1∗a−1。

证明过程:

  1. 逆元的定义

    • 设 a−1 和 b−1 分别是 a 和 b 的逆元。则根据逆元的定义,我们有 a∗a−1=a−1∗a=e 和 b∗b−1=b−1∗b=e,其中 e 是幺元。
  2. 证明 a∗b 有逆元

    • 考虑乘积 (a∗b)∗(b−1∗a−1):
      • 应用结合律:(a∗b)∗(b−1∗a−1)=a∗(b∗(b−1∗a−1))。
      • 由于 b∗b−1=e,表达式简化为:a∗(e∗a−1)。
      • 再次应用幺元的性质,得到 a∗a−1,其结果为 e。
    • 同样地,可以证明 (b−1∗a−1)∗(a∗b)=e。
  3. 结论

    • 因此,b−1∗a−1 是 a∗b 的逆元。
    • 所以,如果 a 和 b 在半群中均有逆元,则它们的乘积 a∗b 也有逆元,且这个逆元是 b−1∗a−1。

结论:

定理 5-3.4 证明了在具有幺元的半群中,两个元素的乘积的逆元可以通过将这两个元素的逆元相乘并反转顺序得到。这个证明展示了结合律和逆元定义在构造逆元证明中的重要性,以及如何在代数系统中操作和组合这些基本概念。

学到了什么?

数学思想

  1. 代数结构中元素的相互作用:理解在代数结构中,如何通过基本元素(如幺元和逆元)的性质来推导出更复杂的结构性质(如乘积的逆元)。
  2. 逆元的性质与运算规则:深入了解逆元在代数结构中的作用,以及逆元与其他元素如何通过运算相互作用。

数学思维

  1. 抽象推理:应用抽象的代数概念(如逆元和幺元)来构建具体的数学论证。
  2. 逻辑结构:运用逻辑推理,根据已知的定义和性质推导新的结论。
  3. 从具体到一般:从具体的实例(如特定的元素和它们的逆元)推广到一般性的结论(如乘积的逆元)。

数学证明方法

  1. 直接证明:通过直接应用定义和已知性质(如结合律和逆元的定义)来证明定理。
  2. 构造性证明:构建特定的数学对象(如乘积的逆元)来证明它们的存在性和性质。
  3. 运用结合律:在代数系统中灵活使用结合律来简化和重组表达式。

数学证明处理技巧

  1. 逐步推导:分步骤地推导结论,确保每一步都清晰、逻辑严密。
  2. 元素替换:在证明中,适时替换元素以简化表达式,如用幺元替换相应的乘积。
  3. 重点突出:在证明中突出关键步骤和重要性质,以便更好地理解和跟踪论证。
  4. 反方向检验:除了正向证明外,还要检验反向乘积以确保逆元的定义满足双向要求。

通过学习和理解这些概念、思维方式和证明技巧,我们能够更深入地理解代数结构中的复杂相互作用,提高解决代数问题的能力。

 总结:

重点

  1. 半群的定义:理解半群是一个非空集合,配以一个封闭且可结合的二元运算。
  2. 结合律的重要性:认识到结合律是定义半群的关键属性。
  3. 半群的例子:熟悉不同类型的半群实例,如正整数集合与加法运算形成的半群。
  4. 半群的子结构:理解子半群的概念以及如何由半群导出其子半群。

难点

  1. 半群与其他代数结构的区分:明确半群与群、环等其他代数结构之间的区别,尤其是缺乏逆元和幺元的特性。
  2. 特殊半群的处理:理解含有幺元的半群(独异点)的特殊性质,以及如何处理这些特殊情况。
  3. 定理的应用:理解和应用定理(如等幂元素的存在性、乘积的逆元性质等)。

易错点

  1. 混淆概念:可能会将半群与群混淆,特别是在逆元和幺元的存在性方面。
  2. 忽视结合律:在考虑半群性质时忽视结合律的应用,特别是在证明定理时。
  3. 错误的应用:错误地将半群中的性质或定理应用于非半群的结构,或将群的性质错误地应用于半群。

为了有效地理解和应用这一节的内容,需要重点关注半群的基本定义和性质,并清楚地区分半群与其他代数结构的差异。同时,应注意在实际问题中正确地应用相关定理和概念。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值