通用人工智能 (AGI) 一直是人工智能研究领域内备受关注和争论的话题,尤其是自 GPT-4 推出以来。通用人工智能 (AGI) 代表在软件中模拟人类认知能力。因此,使 AGI 系统能够找到解决不熟悉任务的方法。AGI 的最终目标是执行人类可以完成的任何任务,特别是使用自然语言理解。然而,没有一个全球公认的通用人工智能定义。有很多通用人工智能的例子,比如自动驾驶汽车、无人机机器人,甚至像 ChatGPT-4 这样的聊天机器人。
强人工智能是通用人工智能的另一个术语。与 AGI 相反,狭义或弱 AI 是指将 AI 应用于特定任务或问题。IBM 的 Watson 超级计算机、专家系统和自动驾驶汽车是狭义人工智能的例子。
通用人工智能定义
如前所述,专业人士对 AGI 的定义存在一些分歧。有些人认为 AGI 是机器感知、学习和执行类似于人类的智力任务的能力。其他人将 AGI 定义为在最具经济价值的工作中超越人类能力的自治系统。开发 AGI 是一些人工智能研究的主要目标,也是 OpenAI、DeepMind 和 Anthropic 等人工智能公司的主要目标。
AGI 的关键能力
创造力: AGI 系统应该能够阅读、理解和改进人类生成的代码。
感官知觉: AGI 应该擅长主观知觉。例如颜色识别和感知深度以及静态图像中的三个维度。
精细运动技能: AGI 应该具有想象力来执行任务,例如从口袋里抓起一组钥匙。
自然语言理解 (NLU): AGI 系统应具备一定程度的直觉,以支持自然语言理解。这是因为人类语言高度依赖上下文。
导航: AGI 应该能够比 GPS 等现有系统更好地预测物理空间中的运动。
AGI 系统也有望处理各种学习和学习算法,为所有任务创建固定结构,并理解符号系统。还假定它可以使用不同种类的知识,理解信仰体系,并进行元认知。
AGI 应该能